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Abstract—This paper introduces an unsupervised anomaly de-
tection method for hyperspectral (HS) images, integrating robust
principal component analysis (RPCA) and a deep autoencoding
adversarial network (AEAN). The proposed method is solved
using a plug-and-play alternating direction method of multi-
pliers (PnP-ADMM). This method uses AEAN as a proximity
operator to promote low-rankness in reconstructed spectral data,
effectively distinguishing anomalous pixels from the background.
Moreover, the performance of anomaly detection is enhanced
by using the anomaly map estimated by the proposed method
as weights for the WLRX detector. Experimental results show
that our method outperforms some existing methods in detection
accuracy.

I. INTRODUCTION

Hyperspectral (HS) images, with several hundred spectral
bands, are widely used in earth surface classification, crop
health assessment, environmental monitoring, and mineral ex-
ploration. Detecting anomalies, which are small areas with
unique spectral characteristics, poses a challenge and often
relies on background modeling or statistical methods. Various
approaches have been proposed, including statistical methods,
subspace methods, linear mixture models, and deep neural
networks [1]–[10].

A representative example is the Reed-Xiaoli (RX) anomaly
detector [3], which detects anomalous pixels in HS data.
The RX detector calculates the anomaly score of each pixel
based on the Mahalanobis distance between the pixel and the
background, with higher scores indicating a higher probability
of being an anomaly. The spectral mean and covariance of the
HS data characterize the background. Many advanced methods
based on RX have been proposed, e.g., [1], [2].

Some deep learning-based methods have been proposed for
HS anomaly detection [4]–[7], often using autoencoder (AE)
models. These methods train AEs with pixels from roughly
estimated background regions, resulting in low reconstruction
errors for background regions and high errors for anomalous
regions. Anomalous pixels are detected based on these er-
rors. Adversarial learning between original and reconstructed
spectra improves accuracy, termed a deep autoencoding ad-
versarial network (AEAN) [7]. Combining AEAN with the
local weighted RX (WLRX) detector [2] further enhances
detection accuracy. However, accurate background estimation

is challenging, and training with inaccurate estimates can
reduce detection accuracy.

In HS anomaly detection, the observed tensor is assumed
to comprise a low-rank background and a sparse anomaly
component and is decomposed using robust principal compo-
nent analysis (RPCA) [8]–[10]. RPCA can be applied to the
2D matrix, utilizing a nuclear norm to enhance the spectral
low-rankness. The 3D approach implements a tensor nuclear
norm (TNN) to improve low-rank properties in both spatial
and spectral domains. However, in complex scenes, TNN often
leads to checkerboard artifacts that diminish the accuracy of
anomaly detection.

In this paper, we propose a novel HS anomaly detection
technique that integrates RPCA and AEAN. We employ the
AEAN model to extract the spectral characteristics of the
background regions from the observed data. Furthermore, to
improve the separation accuracy of background and anomaly
components and to enable robust anomaly detection, we incor-
porate the AEAN model as a regularization for the background
component in the RPCA optimization problem. The proposed
problem can be solved using the plug-and-play alternating
direction method of multipliers (PnP-ADMM). Experiments
show that the proposed method can more accurately detect
anomaly pixels than some conventional methods.

II. PRELIMINARIES

In this paper, bold-faced lowercase and uppercase letters
indicate vectors and matrices, respectively. Real-valued N -
dimensional vector spaces denotes by RN . We define the
N×M real-valued matrix as RN×M . Three-dimensional tensor
is denoted by X ∈ Rn1×n2×n3 and its {i, j, k}-th element is
denoted by [X ]i,j,k.

A. Plug-and-Play Alternating Direction Method of Multipliers
(PnP-ADMM)

Alternating Direction Method of Multipliers (ADMM) [11],
[12] is a proximal splitting algorithm that can treat convex
optimization problems of the form

min
x∈RN1 , z∈RN2

F (x) +G(z) s.t. z = Lx, (1)



where F and G are usually assumed to be a quadratic and
proximable function, respectively, and L ∈ RN2×N1 is a
matrix with full-column rank. For any x(0) ∈ RN1 , z(0) ∈
RN2 ,b(0) ∈ RN2 and ρ > 0, the ADMM algorithm is given
by 

x(t+1) = argmin
x

{
F (x) +

ρ

2
∥z(t) − Lx− b(t)∥22

}
,

z(t+1) = argmin
z

{
G(z) +

ρ

2
∥z− Lx(t+1) − b(t)∥22

}
,

= prox1/ρG(Lx
(t+1) + b(t))

b(t+1) = b(t) + Lx(t+1) − z(t+1),

(2)

where the superscript (t) denotes the iteration number. The
update of z reduces to the proximity operator of the function
G(·)1. The sequence generated by (2) quickly converges to an
optimal solution of (1).

In PnP-ADMM [14], [15], the solution of the sub-problem
w.r.t. z (assuming L is the identity matrix) is replaced by an
off-the-shelf noise removal algorithm, to yield

z(t+1) = Dσ

(
x(t+1) + b(t)

)
, (3)

where Dσ denotes the Gaussian denoiser, and σ is the stan-
dard deviation of the assumed additive white Gaussian noise
(AWGN). Auto-encoder-based networks are often used as
denoiser [15].

B. Robust Principal Component Analysis

RPCA decomposes observational data, represented as a two-
or three-dimensional tensor, into a low-rank tensor and a sparse
tensor. When applied to HS images, RPCA enhances the low-
rank structure of the tensor while preserving spatial correlation.

Let X ∈ Rn1×n2×n3 (n1 and n2 are the height and width
of the HS image, and n3 is the number of the spectral bands)
be an observed HS image. The standard RPCA optimization
problem [8], [9] is defined by

min
L,S

∥L∥∗ + λ∥S∥1 s.t. X = L+ S, (4)

where L ∈ Rn1×n2×n3 and S ∈ Rn1×n2×n3 are the back-
ground and anomaly components, respectively, and λ > 0 is
a balancing weight to control the two terms. The first term
is the regularization term of L based on the nuclear norm,
which promotes the low-rankness of L. The second term is the
regularization term of S based on the ℓ1-norm, which promotes
sparsity of S. Note that RPCA assumes X = L + S as the
observation model.

III. PROPOSED METHOD

The proposed method aims to achieve high-precision and
robust anomaly detection in HS images through three steps:
training the AEAN model using denoised HS images by
singular value decomposition (SVD), solving the optimization

1The proximity operator [13] is a key tool of proximal splitting techniques.
Let x ∈ RN be an input vector. For any γ > 0, the proximity operator of f
over RN is defined by proxγf (x) := argminy∈RN f(y) + 1

2γ
∥x− y∥2.

Fig. 1. The 1D-AEAN model and its training.

TABLE I
THE PROPOSED 1D-AEAN ARCHITECTURE. PARAMETER NOTATION:

KERNEL SIZE × NUMBER OF INPUT CHANNELS × NUMBER OF OUTPUT
CHANNELS

Nets Layer Parameters BN Activation

Encoder

Conv1D 11 × 1 × 5 YES LReLU
Conv1D 9 × 5 × 10 YES LReLU
Conv1D 7 × 10 × 15 YES LReLU
Conv1D 5 × 15 × 20 YES LReLU

Decoder

Conv1DTranspose 5 × 20 × 15 YES LReLU
Conv1DTranspose 7 × 15 × 10 YES LReLU
Conv1DTranspose 9 × 10 × 5 YES LReLU
Conv1DTranspose 11 × 5 × 1 NO Sigmoid

Discriminator

Conv1D 11 × 1 × 5 YES LReLU
Conv1D 9 × 5 × 10 YES LReLU
Conv1D 7 × 10 × 15 YES LReLU
Conv1D 5 × 15 × 20 YES LReLU
Dense 20 × 1 NO Sigmoid

problem based on RPCA with AEAN using PnP-ADMM,
and generating the anomaly map from the estimated anomaly
component by combining the WLRX detector [1], [2].

A. Training the AEAN Model

We train the 1D model of the AEAN (1D-AEAN) to learn an
encoder-decoder structure for reconstructing background com-
ponents from HS images. The conventional method [7] uses the
modified kernel RX algorithm [3] to eliminate anomaly pixels
and identify background pixels for training. However, RX is
noise-sensitive and computationally expensive. To address this,
we preprocess using SVD to remove noise and anomalous
pixels, generating training data (Fig. 1).

Let an observed HS image X ∈ RH×W×B be rearranged
into a 2D matrix X ∈ RN×B , where N = HW . The matrix
X is denoised using SVD by retaining the top 90% of the
singular components. The process involves centering the data,
performing SVD, retaining the significant singular values, and
reconstructing the matrix. This denoised HS data is then used
to train the 1D-AEAN model.

Table I summarizes the details of the architecture of the
proposed 1D-AEAN model.
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B. Solving the proposed optimization problem

Next, we describe the proposed optimization problem based
on RPCA with AEAN. In the proposed method, we enhance
the accuracy of estimating the sparse tensor S, which repre-
sents the anomalous regions, by modeling the low-rank nature
of the background regions using a low-dimensional model
(low-dimensional tensor L) based on the 1D-AEAN model.

To adopt the 1D-AEAN model as the proximity operator
in the PnP-ADMM framework, we define RAEAN as the
regularization term in the minimization problem. We formulate
the proposed optimization problem as follows.

min
L,S

RAEAN(L) + λ∥S∥(G)2,1 s.t. X = L+ S, (5)

where λ > 0 is a balancing weight of two terms.
The second term is the group ℓ1-norm of S, defined as

∥S∥(G)2,1 :=
∥∥∥{∥S(G1)∥2, . . . , ∥S(GN )∥2

}∥∥∥
1
, (6)

where {G1, . . . ,GN} ∈ G are the sets of indices of the one-
dimensional vectors in the spectral direction, and Gn has the
index sets of the spectral vector of the n-th pixel.

To find a solution of (5), we employ the PnP-ADMM algo-
rithm described in Section II-A. The minimization problem (5)
is not directly applicable to PnP-ADMM. Thus, we reformulate
it as

min
L,S

RAEAN(L) + λ∥S∥(G)2,1 + ι{X}(L+ S), (7)

where ι{X}(·) is the indicator function2 of {X}. This function
guarantees the equal constraint X = L + S on optimization.
Furthermore, by introducing auxiliary variables Z1,Z2, and
Z3, we rewrite the minimization problem into the following
equivalent expression:

min
L,S,Zi(i=1,2,3)

RAEAN(Z1) + λ∥Z2∥(G)2,1 + ι{X}(Z3),

s.t. Z1 = L,Z2 = S,Z3 = L+ S.
(8)

The minimization problem (8) can be applied to PnP-ADMM3.

C. Generating Anomaly Maps

In the WLRX-based detector [2], assuming that background
pixels follow a multivariate Gaussian distribution, we use
the estimated S as weights in WLRX to calculate the final
anomaly map. The proposed RPCA with AEAN separates the
spectrum of anomalous regions into a sparse tensor, assigning
high weights to anomalous pixels. To enhance robustness,
we use the inverse of the result of the closing operation on∑

k |[S]i,j,k| as weights ωi(i = 1, . . . , N).
Let x1, . . . ,xN ∈ RB denote the sub-vectors corresponding

to each pixel of the input HS image X . We calculate the
weighted mean vector m as m =

∑
n ω̂nxn and the weighted

2Let x ∈ RN be an input vector. For a given non-empty closed convex set
C, the indicator function of C is defined by ιC(x) which returns 0 if x ∈ C,
and +∞ otherwise.

3We omit the details of the proposed PnP-ADMM algorithm due to space
limitations.

TABLE II
AUCS OF EACH METHOD (THE HIGHEST AUC IS HIGHLIGHTED IN BOLD

AND THE SECOND HIGHEST IN UNDERLINE.

Scene LRX [1] WLRX [2] RPCA [8] 1D-AEAN [7] Ours
Airport1 0.9563 0.9310 0.9575 0.9598 0.9717
Airport2 0.9623 0.9638 0.9828 0.9692 0.9831
Airport3 0.8280 0.9028 0.9147 0.9252 0.9468
Airport4 0.9821 0.9337 0.9999 0.9851 0.9919
Beach1 0.9751 0.9853 0.9760 0.9793 0.9882
Beach2 0.9443 0.9693 0.9457 0.9804 0.9824
Beach3 0.9984 0.9999 0.9957 1.0000 1.0000
Beach4 0.9708 0.9910 0.9612 0.9794 0.9839
Urban1 0.9912 0.9899 0.9771 0.9929 0.9932
Urban2 0.9548 0.9971 0.9649 0.9793 0.9907
Urban3 0.9791 0.9342 0.9897 0.9818 0.9910
Urban4 0.9822 0.9930 0.9943 0.9960 0.9967
Urban5 0.9573 0.9635 0.9791 0.9660 0.9795

Average 0.9601 0.9657 0.9722 0.9765 0.9845

covariance matrix C as C =
∑N

n=1 ω̂n(xn −m)(xn −m)⊤,
where ω̂n is the n-th normalized weights. The anomaly score
for n = 1, . . . , N is calculated by AD(xn) = (xn −
m)⊤C−1(xn −m).

IV. EXPERIMENTAL RESULTS

The proposed anomaly detection method was evaluated
using ROC and AUC metrics on the ABU (airport, beach,
urban) dataset. Noisy short-wavelength bands were removed,
image intensity was normalized to [0, 1], and the spectral
domain was resized to 80 bands using bicubic interpolation.

We compared the proposed method with local-RX (LRX)
[1], WLRX [2], and RPCA [8]. In addition, to verify the
effectiveness of RPCA with AEAN in our method, we also
compared it with the 1D-AEAN model. For each input HS
image, we trained the 1D-AEAN model as described in Section
III-A, computed the reconstruction error, and generated the
anomaly map from the error as described in Section III-C.
This approach can be seen as a slightly modified version of the
1D-AEAN model presented in [7]. We termed it “1D-AEAN”.

Table II shows the results of the AUC scores for the
proposed and conventional methods. The proposed method
consistently outperforms conventional methods in most scenes
and secures high ranks in several specific scenes. While LRX
shows a lower average performance, WLRX and RPCA per-
form competitively. Additionally, 1D-AEAN achieves notable
results in specific scenes, including a perfect score in one and
a high average performance across methods.

Figure 2 shows binary anomaly maps generated by our
method and conventional methods to maximize the F-score
against the ground truth. The proposed method results in
fewer false detections and higher accuracy across all scenes.
RX-based methods and RPCA show lower accuracy and
higher false detections of non-anomalous pixels. 1D-AEAN
has slightly more false detections and lower accuracy than the
proposed method.
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Airport4

urban3
Pseudo-colorized input ground truth LRX [1] WLRX [2] RPCA [8] 1D-AEAN [7] Ours

Fig. 2. Anomaly detection results obtained by binarizing the anomaly maps to maximize the F-score.

V. CONCLUSION

We introduced the unsupervised anomaly detection method
for HS images. This method combines RPCA and AEAN
and is solved using PnP-ADMM. We utilize a pre-trained
autoencoder as a proximity operator in RPCA to encourage low
rankness in the reconstructed spectral data, effectively detect-
ing anomalous pixels from the background. The experimental
results confirmed the effectiveness of our method compared to
some conventional approaches.
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