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Abstract — Modern computing architectures mainly utilize the 

Von-Neumann architecture. However, the increasing demand for 

processing vast volumes of data worsens the Von-Neumann 

bottleneck, which results in significant energy consumption and 

computational latency. In-memory computing provides an 

effective solution for Von-Neumann bottleneck by performing 

fundamental logical or arithmetic operations inside the memory 

directly. In this paper, an in-memory computing architecture with 

dynamic switching function is proposed to provide multiple logical 

or arithmetic operations. The 8+T SRAM cell and pass transistor 

logic circuits are utilized in the proposed in-memory computing 

architecture. Specifically, we introduce the design of a dynamic 

adder-subtractor capable of switching between addition and 

subtraction, thereby enhancing the efficiency of in-memory 

computing. 

I. INTRODUCTION 

The widespread application of modern artificial intelligence 

and deep learning underscores the inefficiencies of the 

traditional Von Neumann architecture [1], particularly in 

managing high-speed, large-volume data transfers. The 

separation of the Arithmetic Logic Unit (ALU) and Memory 

Unit necessitates repeated data transfers, resulting in the well-

documented Von Neumann bottleneck [2], which reduces 

system throughput and increases power consumption and 

performance degradation. 

In-Memory Computing (IMC) [3][4] addresses this 

bottleneck by performing logical or arithmetic operations 

within memory units using simple circuits, thus reducing the 

frequency of data transfers. This paper aims to efficiently 

execute the six basic logical operations (AND, NAND, OR, 

NOR, XOR, XNOR) and two arithmetic operations (full adder 

and full subtractor) using 8+T Static Random Access Memory 

(SRAM) [8-11]. This architecture leverages Read Bit Lines 

(RBL, RBLB) for AND and NOR results and uses inverters for 

NAND and NOR results. Additionally, XOR and XNOR 

operations are achieved using two transistors, as referenced in 

previous studies [17-19]. For arithmetic operations, we adopt 

the full adder architecture [13-14], utilizing two sets of four 

transistors for Sum (S) and Carry-out (Co) outputs. By 

comparing the truth tables of the full adder and full subtractor, 

the design is enhanced to produce Difference (D) and Borrow-

out (Bo) outputs for the full subtractor. Dynamic input 

switching allows for quick retrieval of full adder and full 

subtractor values within the memory, enabling multiple 

operations within a single memory unit. 

II. 8+T SRAM AND PASS TRANSISTOR OPERATIONS 

Many researchers have proposed various ideas in the field of 

IMC. Agrawal et al. [10] have suggested using two cells of 8+T 

SRAM in series to obtain logical operation results. Fig. 1 shows 

the 8+T SRAM operations in case (0,0) and case (1,1). In the 

left part of Fig. 1, both cells are written with 0, and the 8+T 

SRAM begins read mode, activating RWL. Q1 and Q2 are 0, 

causing N6 and N13 to be cut off, keeping RBLB at a high 

potential. Qb1 and Qb2 are 1, causing N5 and N12 to conduct 

and discharge RBL to GND. Therefore, in case (0,0), RBL 

drops to low voltage, i.e., logic 0, and RBLB remains at high 

voltage, i.e., logic 1. The right diagram in Fig. 1 operates on the 

same principle as the left diagram described above. The 

conclusion is RBL remains at high voltage, i.e., logic 1, and 

RBLB also remains at high voltage. 

In Fig. 2, the operating principles described above also apply. 

Therefore, for case (0,1) and case (1,0), the conclusion is RBL 

will drop to low voltage, and RBLB will also drop to low 

voltage. Table 1 lists the truth table of AND and NOR functions, 

it can be observed that RBL exhibits AND logic while RBLB 

exhibits NOR logic. 

 

Fig. 1.  The 8+T SRAM operations in case (0,0) and case (1,1) 
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Table 1    Logical Behavior Table of 8+T SRAM 

Q1 Q2 RBL 

(AND) 

RBLB 

(NOR) 

0 0 0 1 

0 1 0 0 

1 0 0 0 

1 1 1 0 

 

This means that if an inverter is connected the resulting 

output will be NAND logic. Conversely, if an inverter is 

connected next to RBLB, the resulting output will be OR logic. 

In this manner, all four basic logical operations can be quickly 

obtained within the memory using RWL control. 

Singh et al. [13] used Pass Transistor Logic (PTL) to 

generate the Sum and Cout of a full adder. This architecture 

first outputs the input values as XOR logic and connects them 

to an inverter to generate XNOR. These results are then used to 

produce the output of the full adder. Compared to CMOS, PTL 

uses fewer transistors to create various logic gates. In PTL, 

transistors act as switches between circuit nodes to determine 

logic levels without directly connecting to a voltage source, 

often resulting in lower output voltage. Multiple transistors in 

series usually require a stabilized power supply to restore the 

signal voltage. 

For instance, Fig. 3 compares CMOS and PTL architectures 

for an AND gate. The PTL significantly reduces the number of 

required transistors. However, the XOR generation architecture 

in the referenced paper has flaws. Consequently, this study 

adopts only the full adder architecture from that reference, as 

illustrated in Fig. 4. Utilizing PTL, this design completes the 

full adder operation and significantly reduces transistor count 

compared to traditional implementations. Furthermore, PTL's 

design inherently lowers power consumption due to its lack of 

reliance on a stable voltage source. 

  

III. DYNAMIC SWITCH IN MEMORY COMPUTING 

This paper selects 8+T SRAM for its unique characteristics, 

enabling the generation of multiple logic gates with a few 

inverters. Separating the read and write lines addresses the data 

inversion issue found in 6T SRAM. While 8+T SRAM 

inherently produces four logic gates (AND, NAND, OR, NOR), 

most arithmetic operations necessitate XOR and XNOR gates. 

Referencing [7], this study generates XOR and XNOR gates by 

connecting two transistors to the Q1 and Q2 points in two cells. 

These XOR and XNOR gates are then integrated into the 

PTL adder architecture to yield a two-bit adder output. By 

comparing the truth tables of addition and subtraction, the 

architecture can be slightly modified to produce subtraction 

outputs. Finally, incorporating input switching functionality 

allows for dynamic switching between addition, subtraction, 

and logic operations within the memory. 

A. Logical Operations 

According to one of the papers discussed in the Related 

Studies, we can understand that through the discharge 

characteristics of 8+T SRAM, an AND logic gate result can be 

obtained at the RBL end, and a NOR logic gate result can be 

obtained at the RBLB end. However, if an inverter is added to 

each end, NAND and OR results can be achieved, as shown in 

Fig. 5. Additionally, the extra inverter acts as a buffer, making 

the output logic more stable. 

Next, we will generate XOR and XNOR based on the 

methodology described in reference [7]. As shown in Fig. 6, 

connecting the Q1, Q2, and Qb1 points from Fig. 5 using the 

CMOS inverter architecture yields the XNOR result. The 

circuit logic is as follows: when Q2 is 1, the NMOS transistor 

conducts and the PMOS transistor is cut off, making Q1 

represent the XNOR outcome. Conversely, when Q2 is 0, the 

PMOS transistor conducts and the NMOS transistor is cut off, 

making Qb1 represent the XNOR outcome. An additional 

 

Fig. 2   The 8+T SRAM operations in case (0,1) and case (1,0) 

 

Fig. 3  AND Logic Gate in CMOS and PTL Architectures 

 

Fig. 4  Illustration of Full Adder Implementation Using PTL 
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inverter is then used to produce the XOR output. The derived 

truth table for XOR and XNOR logic with respect to Q1 and 

Q2 follows from this circuit logic. 

B. Addition and Subtraction Operation 

Upon completing the six basic logical operations, we utilize 

the previously generated XOR and XNOR results to perform 

addition and subtraction operations. We first examine the 

circuit logic for Cout, as illustrated in Fig. 7. When the XOR 

result of Q1 and Q2 is 1 and the XNOR result is 0, Cout takes 

the Cin value. Conversely, when the XOR result is 0 and the 

XNOR result is 1, Cout takes the Q2 value. The corresponding 

truth table is presented in  

Table 2 references in alphabetical order or in order of 

appearance in the paper [6]. Next, let's discuss the circuit logic 

for the Sum. As shown in Fig.8, when Cin is 1 and Cin is 0, 

Sum directly takes the XNOR value of Q1 and Q2. Conversely, 

when Cin is 0 and Cin is 1, Sum directly takes the XOR value 

of Q1 and Q2. The corresponding truth table is presented in 

Table 3. 

Table.2   Truth Table of Cout Using PTL Architecture 

Q2 Cin XOR XNOR Cout 

0 0 1 0 0(Cin) 

0 0 0 1 0(Q2) 

0 1 1 0 1(Cin) 

0 1 0 1 0(Q2) 

1 0 1 0 0(Cin) 

1 0 0 1 1(Q2) 

1 1 1 0 1(Cin) 

1 1 0 1 1(Q2) 

  

 

Table. 3   Truth Table of Cout Using PTL Architecture 

XOR XNOR Cin 𝐶𝑖𝑛  Sum 

0 0 1 0 0(XNOR) 

0 0 0 1 0(XOR) 

0 1 1 0 1(XNOR) 

0 1 0 1 0(XOR) 

1 0 1 0 0(XNOR) 

1 0 0 1 1(XOR) 

1 1 1 0 1(XNOR) 

1 1 0 1 1(XOR) 

Comparing the truth tables of the full adder and full 

subtractor reveals that the Difference in the full subtractor and 

the Sum in the full adder are identical. This suggests that the 

PTL full adder architecture generating the Sum for addition can 

also produce the Difference for subtraction. 

Next, we consider integrating Cout and Bout. Based on the 

previously introduced PTL adder circuit logic, when Q1 and Q2 

yield XNOR = 1, Bout equals Q2. Conversely, when Q1 and 

Q2 yield XOR = 1, Bout equals Cin, the inverse logic of 

addition. Thus, by interchanging Q2 and Cin in the PTL 

architecture generating Cout, as shown in Fig. 9, Bout can be 

obtained. 

 

 

Fig.6  The XNOR integrated with the 8+T SRAM circuit. 

 

Fig.9   Generating Bout in PTL Architecture 

 

Fig.5    8+T SRAM Generating AND, NAND, OR, NOR 

 

Fig.7   Circuit Diagram of Cout in PTL Architecture 

 

 

Fig.8   Circuit Diagram of Sum in PTL Architecture 
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 Given that both addition and subtraction can be integrated 

within the PTL architecture, we aim to enable dynamic 

switching between the Q2 and Cin/Bin points in the Cout/Bout 

generation. Therefore, we have designed the following 

architecture. For readability, both Cin and Bin are referred to 

as "in," as shown in Fig. 10. When the Enable input is 0, M2 

and M3 conduct, while M1 and M4 are cut off, allowing the 

data from the "in" terminal to reach point Y through M2, and 

the data from Q2 to reach point X through M3. This means that 

"when Enable = 0, the PTL architecture performs addition to 

generate Cout." Conversely, when the Enable input is 1, M1 

and M4 conduct, while M2 and M3 are cut off, allowing the 

data from the "in" terminal to reach point X through M1, and 

the data from Q2 to reach point Y through M4. This means that 

when Enable = 1, the PTL architecture performs subtraction to 

generate Bout. 

The entire design and operation of the circuit have been 

introduced above. Utilizing the 8+T SRAM in combination 

with the PTL adder-subtractor allows for efficient and rapid 

logical and arithmetic operations within the memory. With this, 

the complete in-memory computing architecture has been 

thoroughly explained.     

IV. EXPERIMENTAL RESULTS 

A. Logical Operation Results 

The preceding sections thoroughly introduce the architecture 

and operation of this study. Next, we will present the results 

and validate the functionality. All simulations and 

measurements were conducted using HSPICE, utilizing the 

180-nanometer (nm) virtual process from TSRI at 25°C and 

1.8V. 

And then, we will explain the results of the logical operations. 

As seen in the various figures, before 5 microseconds (μs), the 

WWL is activated to allow data to be written into the memory. 

Subsequently, the WWL is deactivated, and the RWL is 

activated to enable data to be read and correctly generate the 

logical output. Therefore, the logical output results before 5 

microseconds (μs) are not the final results. 

The results from the above figures match those of the basic 

logic gates. 

B. Addition and Subtraction Operation Results 

Next, we will explain the results of the addition operations in 

the Fig. 12. By comparing the experimental results with the 

truth table of the full adder, it can be observed that the two 

results match each other. 

Next, we will explain the results of the subtraction operations 

in the Fig.13. By comparing the experimental results with the 

truth table of the full subtractor, it can be observed that the two 

results match each other. 

C. Delay Time Results 

The propagation delay, measured in picoseconds (ps), is 

calculated from the activation of the WWL or RWL until the 

voltage reaches VDD/2 and from the initiation of operations 

(XOR, XNOR, Sum/Diff, Cout/Bout, AND, NAND, OR, NOR) 

until their output reaches VDD/2. 

 

 
Fig.10   Dynamic Switching with PTL Architecture for 

Generating Co/Bo 

 

Fig.11    Logical Outputs Generated by 8+T SRAM in Various States 

 

Fig.12  Addition Results Generated by the Proposed Architecture in 

Various States 
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Table 4  Delay Time of the Proposed Architecture in This Paper (Unit: ps) 

 Addition Subtraction 

AND 84.1875 82.9674 

NAND 61.6961 60.2848 

OR 63.1859 64.0917 

NOR 85.8013 86.7333 

XOR 249.7036 301.3825 

XNOR 165.0656 238.0201 

Sum/Diff 477.7527 492.1859 

Cout/Bout 466.3265 630.9141 

 
Table 5    Overall Power Consumption (Unit: µW) 

Cin/ 

Bin 

ADD/ 

SUB 

Q1/Q2 Individual Write Values 

(0,0) (0,1) (1,0) (1,1) 

in=0 
ADD 48.6280 80.9560 84.4149 304.558 

SUB 49.5960 286.847 459.489 320.609 

in=1 
ADD 49.5421 80.9561 489.497 286.461 

SUB 49.5962 280.869 469.211 317.727 

AVG 49.3405 182.407 375.653 307.338 

 

Table 4 shows the maximum delay times for the proposed 

architecture in each state. In some states, there is no delay time. 

For Sum/Diff, Cout/Bout, XOR, and XNOR outputs, delays 

occur only in cases (1,0) and (1,1). In other states, the output 

values before and after WWL activation to VDD/2 are the same, 

resulting in no delay. For AND and NAND, there is no delay in 

case (1,1); for OR and NOR, there is no delay in case (0,0). 

D. Power Consumption Calculation 

This paper measures the average power consumption for 

each state when Q1, Q2, and Cin/Bin are individually written. 

The unit of measurement is fixed at microwatts (µW). Table 5 

shows that overall power consumption peaks in the (1,0) state. 

This is likely due to the PTL architecture's primary drawback 

of lacking full swing at the output, leading to static power 

consumption. This issue can be mitigated using dual-edge-

triggered flip-flops [20]. However, the architecture's advantage 

lies in performing both addition and subtraction through the 

exchange of two transistors, significantly reducing the required 

area. Future research will focus on reducing power 

consumption 

V. CONCLUSION 

The remarkable growth of artificial intelligence and deep 

learning has led to unprecedented data volumes, straining 

existing hardware. In-memory computing has thus become a 

critical research focus. While most research targets logical 

operations, the increasing demand for arithmetic operations is 

evident. This study explores using 8+T SRAM to enable both 

logical and arithmetic operations. Using Pass Transistor Logic 

(PTL) circuits, we designed an adder generating Sum and 

Carry-out outputs. Additionally, by examining adder and 

subtractor truth tables, we developed a dynamically switchable 

adder-subtractor. 

Integrating computational functions within memory 

mitigates data transfer and processing delays, enhancing 

overall system performance. The dynamically switchable 

adder-subtractor offers high flexibility and scalability, 

addressing diverse computational needs and aligning with the 

performance demands of modern computing systems. 

This research aims to provide valuable insights into 

advancing in-memory computing technologies and offers new 

perspectives on enhancing computer system performance and 

efficiency. Future research will optimize and apply this 

technology for broader applications and significant 

breakthroughs. 
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