
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Optimizing Computational Efficiency: In-Memory

Computing with Dynamic Switching

Kun-Lin Tsai and Chao-Ting Huang

Dept. of Electrical Engineering, Tunghai University, Taichung, Taiwan (R.O.C.)

E-mail: kltsai@thu.edu.tw; kimihuang4509@gmail.com

Abstract — Modern computing architectures mainly utilize the

Von-Neumann architecture. However, the increasing demand for

processing vast volumes of data worsens the Von-Neumann

bottleneck, which results in significant energy consumption and

computational latency. In-memory computing provides an

effective solution for Von-Neumann bottleneck by performing

fundamental logical or arithmetic operations inside the memory

directly. In this paper, an in-memory computing architecture with

dynamic switching function is proposed to provide multiple logical

or arithmetic operations. The 8+T SRAM cell and pass transistor

logic circuits are utilized in the proposed in-memory computing

architecture. Specifically, we introduce the design of a dynamic

adder-subtractor capable of switching between addition and

subtraction, thereby enhancing the efficiency of in-memory

computing.

I. INTRODUCTION

The widespread application of modern artificial intelligence

and deep learning underscores the inefficiencies of the

traditional Von Neumann architecture [1], particularly in

managing high-speed, large-volume data transfers. The

separation of the Arithmetic Logic Unit (ALU) and Memory

Unit necessitates repeated data transfers, resulting in the well-

documented Von Neumann bottleneck [2], which reduces

system throughput and increases power consumption and

performance degradation.

In-Memory Computing (IMC) [3][4] addresses this

bottleneck by performing logical or arithmetic operations

within memory units using simple circuits, thus reducing the

frequency of data transfers. This paper aims to efficiently

execute the six basic logical operations (AND, NAND, OR,

NOR, XOR, XNOR) and two arithmetic operations (full adder

and full subtractor) using 8+T Static Random Access Memory

(SRAM) [8-11]. This architecture leverages Read Bit Lines

(RBL, RBLB) for AND and NOR results and uses inverters for

NAND and NOR results. Additionally, XOR and XNOR

operations are achieved using two transistors, as referenced in

previous studies [17-19]. For arithmetic operations, we adopt

the full adder architecture [13-14], utilizing two sets of four

transistors for Sum (S) and Carry-out (Co) outputs. By

comparing the truth tables of the full adder and full subtractor,

the design is enhanced to produce Difference (D) and Borrow-

out (Bo) outputs for the full subtractor. Dynamic input

switching allows for quick retrieval of full adder and full

subtractor values within the memory, enabling multiple

operations within a single memory unit.

II. 8+T SRAM AND PASS TRANSISTOR OPERATIONS

Many researchers have proposed various ideas in the field of

IMC. Agrawal et al. [10] have suggested using two cells of 8+T

SRAM in series to obtain logical operation results. Fig. 1 shows

the 8+T SRAM operations in case (0,0) and case (1,1). In the

left part of Fig. 1, both cells are written with 0, and the 8+T

SRAM begins read mode, activating RWL. Q1 and Q2 are 0,

causing N6 and N13 to be cut off, keeping RBLB at a high

potential. Qb1 and Qb2 are 1, causing N5 and N12 to conduct

and discharge RBL to GND. Therefore, in case (0,0), RBL

drops to low voltage, i.e., logic 0, and RBLB remains at high

voltage, i.e., logic 1. The right diagram in Fig. 1 operates on the

same principle as the left diagram described above. The

conclusion is RBL remains at high voltage, i.e., logic 1, and

RBLB also remains at high voltage.

In Fig. 2, the operating principles described above also apply.

Therefore, for case (0,1) and case (1,0), the conclusion is RBL

will drop to low voltage, and RBLB will also drop to low

voltage. Table 1 lists the truth table of AND and NOR functions,

it can be observed that RBL exhibits AND logic while RBLB

exhibits NOR logic.

Fig. 1. The 8+T SRAM operations in case (0,0) and case (1,1)

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Table 1 Logical Behavior Table of 8+T SRAM

Q1 Q2 RBL

(AND)

RBLB

(NOR)

0 0 0 1

0 1 0 0

1 0 0 0

1 1 1 0

This means that if an inverter is connected the resulting

output will be NAND logic. Conversely, if an inverter is

connected next to RBLB, the resulting output will be OR logic.

In this manner, all four basic logical operations can be quickly

obtained within the memory using RWL control.

Singh et al. [13] used Pass Transistor Logic (PTL) to

generate the Sum and Cout of a full adder. This architecture

first outputs the input values as XOR logic and connects them

to an inverter to generate XNOR. These results are then used to

produce the output of the full adder. Compared to CMOS, PTL

uses fewer transistors to create various logic gates. In PTL,

transistors act as switches between circuit nodes to determine

logic levels without directly connecting to a voltage source,

often resulting in lower output voltage. Multiple transistors in

series usually require a stabilized power supply to restore the

signal voltage.

For instance, Fig. 3 compares CMOS and PTL architectures

for an AND gate. The PTL significantly reduces the number of

required transistors. However, the XOR generation architecture

in the referenced paper has flaws. Consequently, this study

adopts only the full adder architecture from that reference, as

illustrated in Fig. 4. Utilizing PTL, this design completes the

full adder operation and significantly reduces transistor count

compared to traditional implementations. Furthermore, PTL's

design inherently lowers power consumption due to its lack of

reliance on a stable voltage source.

III. DYNAMIC SWITCH IN MEMORY COMPUTING

This paper selects 8+T SRAM for its unique characteristics,

enabling the generation of multiple logic gates with a few

inverters. Separating the read and write lines addresses the data

inversion issue found in 6T SRAM. While 8+T SRAM

inherently produces four logic gates (AND, NAND, OR, NOR),

most arithmetic operations necessitate XOR and XNOR gates.

Referencing [7], this study generates XOR and XNOR gates by

connecting two transistors to the Q1 and Q2 points in two cells.

These XOR and XNOR gates are then integrated into the

PTL adder architecture to yield a two-bit adder output. By

comparing the truth tables of addition and subtraction, the

architecture can be slightly modified to produce subtraction

outputs. Finally, incorporating input switching functionality

allows for dynamic switching between addition, subtraction,

and logic operations within the memory.

A. Logical Operations

According to one of the papers discussed in the Related

Studies, we can understand that through the discharge

characteristics of 8+T SRAM, an AND logic gate result can be

obtained at the RBL end, and a NOR logic gate result can be

obtained at the RBLB end. However, if an inverter is added to

each end, NAND and OR results can be achieved, as shown in

Fig. 5. Additionally, the extra inverter acts as a buffer, making

the output logic more stable.

Next, we will generate XOR and XNOR based on the

methodology described in reference [7]. As shown in Fig. 6,

connecting the Q1, Q2, and Qb1 points from Fig. 5 using the

CMOS inverter architecture yields the XNOR result. The

circuit logic is as follows: when Q2 is 1, the NMOS transistor

conducts and the PMOS transistor is cut off, making Q1

represent the XNOR outcome. Conversely, when Q2 is 0, the

PMOS transistor conducts and the NMOS transistor is cut off,

making Qb1 represent the XNOR outcome. An additional

Fig. 2 The 8+T SRAM operations in case (0,1) and case (1,0)

Fig. 3 AND Logic Gate in CMOS and PTL Architectures

Fig. 4 Illustration of Full Adder Implementation Using PTL

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

inverter is then used to produce the XOR output. The derived

truth table for XOR and XNOR logic with respect to Q1 and

Q2 follows from this circuit logic.

B. Addition and Subtraction Operation

Upon completing the six basic logical operations, we utilize

the previously generated XOR and XNOR results to perform

addition and subtraction operations. We first examine the

circuit logic for Cout, as illustrated in Fig. 7. When the XOR

result of Q1 and Q2 is 1 and the XNOR result is 0, Cout takes

the Cin value. Conversely, when the XOR result is 0 and the

XNOR result is 1, Cout takes the Q2 value. The corresponding

truth table is presented in

Table 2 references in alphabetical order or in order of

appearance in the paper [6]. Next, let's discuss the circuit logic

for the Sum. As shown in Fig.8, when Cin is 1 and Cin is 0,

Sum directly takes the XNOR value of Q1 and Q2. Conversely,

when Cin is 0 and Cin is 1, Sum directly takes the XOR value

of Q1 and Q2. The corresponding truth table is presented in

Table 3.

Table.2 Truth Table of Cout Using PTL Architecture

Q2 Cin XOR XNOR Cout

0 0 1 0 0(Cin)

0 0 0 1 0(Q2)

0 1 1 0 1(Cin)

0 1 0 1 0(Q2)

1 0 1 0 0(Cin)

1 0 0 1 1(Q2)

1 1 1 0 1(Cin)

1 1 0 1 1(Q2)

Table. 3 Truth Table of Cout Using PTL Architecture

XOR XNOR Cin 𝐶𝑖𝑛 Sum

0 0 1 0 0(XNOR)

0 0 0 1 0(XOR)

0 1 1 0 1(XNOR)

0 1 0 1 0(XOR)

1 0 1 0 0(XNOR)

1 0 0 1 1(XOR)

1 1 1 0 1(XNOR)

1 1 0 1 1(XOR)

Comparing the truth tables of the full adder and full

subtractor reveals that the Difference in the full subtractor and

the Sum in the full adder are identical. This suggests that the

PTL full adder architecture generating the Sum for addition can

also produce the Difference for subtraction.

Next, we consider integrating Cout and Bout. Based on the

previously introduced PTL adder circuit logic, when Q1 and Q2

yield XNOR = 1, Bout equals Q2. Conversely, when Q1 and

Q2 yield XOR = 1, Bout equals Cin, the inverse logic of

addition. Thus, by interchanging Q2 and Cin in the PTL

architecture generating Cout, as shown in Fig. 9, Bout can be

obtained.

Fig.6 The XNOR integrated with the 8+T SRAM circuit.

Fig.9 Generating Bout in PTL Architecture

Fig.5 8+T SRAM Generating AND, NAND, OR, NOR

Fig.7 Circuit Diagram of Cout in PTL Architecture

Fig.8 Circuit Diagram of Sum in PTL Architecture

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

 Given that both addition and subtraction can be integrated

within the PTL architecture, we aim to enable dynamic

switching between the Q2 and Cin/Bin points in the Cout/Bout

generation. Therefore, we have designed the following

architecture. For readability, both Cin and Bin are referred to

as "in," as shown in Fig. 10. When the Enable input is 0, M2

and M3 conduct, while M1 and M4 are cut off, allowing the

data from the "in" terminal to reach point Y through M2, and

the data from Q2 to reach point X through M3. This means that

"when Enable = 0, the PTL architecture performs addition to

generate Cout." Conversely, when the Enable input is 1, M1

and M4 conduct, while M2 and M3 are cut off, allowing the

data from the "in" terminal to reach point X through M1, and

the data from Q2 to reach point Y through M4. This means that

when Enable = 1, the PTL architecture performs subtraction to

generate Bout.

The entire design and operation of the circuit have been

introduced above. Utilizing the 8+T SRAM in combination

with the PTL adder-subtractor allows for efficient and rapid

logical and arithmetic operations within the memory. With this,

the complete in-memory computing architecture has been

thoroughly explained.

IV. EXPERIMENTAL RESULTS

A. Logical Operation Results

The preceding sections thoroughly introduce the architecture

and operation of this study. Next, we will present the results

and validate the functionality. All simulations and

measurements were conducted using HSPICE, utilizing the

180-nanometer (nm) virtual process from TSRI at 25°C and

1.8V.

And then, we will explain the results of the logical operations.

As seen in the various figures, before 5 microseconds (μs), the

WWL is activated to allow data to be written into the memory.

Subsequently, the WWL is deactivated, and the RWL is

activated to enable data to be read and correctly generate the

logical output. Therefore, the logical output results before 5

microseconds (μs) are not the final results.

The results from the above figures match those of the basic

logic gates.

B. Addition and Subtraction Operation Results

Next, we will explain the results of the addition operations in

the Fig. 12. By comparing the experimental results with the

truth table of the full adder, it can be observed that the two

results match each other.

Next, we will explain the results of the subtraction operations

in the Fig.13. By comparing the experimental results with the

truth table of the full subtractor, it can be observed that the two

results match each other.

C. Delay Time Results

The propagation delay, measured in picoseconds (ps), is

calculated from the activation of the WWL or RWL until the

voltage reaches VDD/2 and from the initiation of operations

(XOR, XNOR, Sum/Diff, Cout/Bout, AND, NAND, OR, NOR)

until their output reaches VDD/2.

Fig.10 Dynamic Switching with PTL Architecture for

Generating Co/Bo

Fig.11 Logical Outputs Generated by 8+T SRAM in Various States

Fig.12 Addition Results Generated by the Proposed Architecture in

Various States

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Table 4 Delay Time of the Proposed Architecture in This Paper (Unit: ps)

 Addition Subtraction

AND 84.1875 82.9674

NAND 61.6961 60.2848

OR 63.1859 64.0917

NOR 85.8013 86.7333

XOR 249.7036 301.3825

XNOR 165.0656 238.0201

Sum/Diff 477.7527 492.1859

Cout/Bout 466.3265 630.9141

Table 5 Overall Power Consumption (Unit: µW)

Cin/

Bin

ADD/

SUB

Q1/Q2 Individual Write Values

(0,0) (0,1) (1,0) (1,1)

in=0
ADD 48.6280 80.9560 84.4149 304.558

SUB 49.5960 286.847 459.489 320.609

in=1
ADD 49.5421 80.9561 489.497 286.461

SUB 49.5962 280.869 469.211 317.727

AVG 49.3405 182.407 375.653 307.338

Table 4 shows the maximum delay times for the proposed

architecture in each state. In some states, there is no delay time.

For Sum/Diff, Cout/Bout, XOR, and XNOR outputs, delays

occur only in cases (1,0) and (1,1). In other states, the output

values before and after WWL activation to VDD/2 are the same,

resulting in no delay. For AND and NAND, there is no delay in

case (1,1); for OR and NOR, there is no delay in case (0,0).

D. Power Consumption Calculation

This paper measures the average power consumption for

each state when Q1, Q2, and Cin/Bin are individually written.

The unit of measurement is fixed at microwatts (µW). Table 5

shows that overall power consumption peaks in the (1,0) state.

This is likely due to the PTL architecture's primary drawback

of lacking full swing at the output, leading to static power

consumption. This issue can be mitigated using dual-edge-

triggered flip-flops [20]. However, the architecture's advantage

lies in performing both addition and subtraction through the

exchange of two transistors, significantly reducing the required

area. Future research will focus on reducing power

consumption

V. CONCLUSION

The remarkable growth of artificial intelligence and deep

learning has led to unprecedented data volumes, straining

existing hardware. In-memory computing has thus become a

critical research focus. While most research targets logical

operations, the increasing demand for arithmetic operations is

evident. This study explores using 8+T SRAM to enable both

logical and arithmetic operations. Using Pass Transistor Logic

(PTL) circuits, we designed an adder generating Sum and

Carry-out outputs. Additionally, by examining adder and

subtractor truth tables, we developed a dynamically switchable

adder-subtractor.

Integrating computational functions within memory

mitigates data transfer and processing delays, enhancing

overall system performance. The dynamically switchable

adder-subtractor offers high flexibility and scalability,

addressing diverse computational needs and aligning with the

performance demands of modern computing systems.

This research aims to provide valuable insights into

advancing in-memory computing technologies and offers new

perspectives on enhancing computer system performance and

efficiency. Future research will optimize and apply this

technology for broader applications and significant

breakthroughs.

REFERENCES

[1] Backus, J. (1978). Can programming be liberated from the von

Neumann style? A functional style and its algebra of programs.

Communications of the ACM, 21(8), 613-641.

[2] Zou, X., Xu, S., Chen, X., Yan, L., & Han, Y. (2021). Breaking

the von Neumann bottleneck: architecture-level processing-in-

memory technology. Science China Information Sciences, 64(6),

160404.

[3] Elliott, D. G., Stumm, M., Snelgrove, W. M., Cojocaru, C., &

McKenzie, R. (1999). Computational RAM: Implementing

processors in memory. IEEE Design & Test of Computers, 16(1),

32-41.

[4] Gauchi, R., Kooli, M., Vivet, P., Noel, J. P., Beigné, E., Mitra, S.,

& Charles, H. P. (2019, October). Memory sizing of a scalable

SRAM in-memory computing tile based architecture. In 2019

Fig. 13 Subtraction Results Generated by the Proposed Architecture in

Various States

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

IFIP/IEEE 27th International Conference on Very Large Scale

Integration (VLSI-SoC) (pp. 166-171). IEEE.

[5] Singh, J., Pradhan, D. K., Hollis, S., & Mohanty, S. P. (2008). A

single ended 6T SRAM cell design for ultra-low-voltage

applications. IEICE Electronics Express, 5(18), 750-755.

[6] Zhang, J., Wang, Z., & Verma, N. (2017). In-memory

computation of a machine-learning classifier in a standard 6T

SRAM array. IEEE Journal of Solid-State Circuits, 52(4), 915-

924.

[7] Athe, P., & Dasgupta, S. (2009, October). A Comparative Study

of 6T, 8T and 9T Decanano SRAM cell. In 2009 IEEE

Symposium on Industrial Electronics & Applications (Vol. 2, pp.

889-894). IEEE.

[8] Ramani, A. R., & Choi, K. (2011, May). A novel 9T SRAM

design in sub-threshold region. In 2011 IEEE INTERNATIONAL

CONFERENCE ON ELECTRO/INFORMATION

TECHNOLOGY (pp. 1-6). IEEE.

[9] Kulkarni, J. P., Goel, A., Ndai, P., & Roy, K. (2010). A read-

disturb-free, differential sensing 1R/1W port, 8T bitcell array.

IEEE transactions on very large scale integration (VLSI) systems,

19(9), 1727-1730.

[10] Agrawal, A., Jaiswal, A., Lee, C., & Roy, K. (2018). X-SRAM:

Enabling in-memory Boolean computations in CMOS static

random access memories. IEEE Transactions on Circuits and

Systems I: Regular Papers, 65(12), 4219-4232.

[11] Song, S., & Kim, Y. (2021, October). Novel in-memory

computing circuit using muller C-element. In 2021 18th

International SoC Design Conference (ISOCC) (pp. 81-82). IEEE.

[12] B. Holdsworth . (2002) Digital Logic Design.

[13] Singh, S. S., Leishangthem, D., Shah, M. N., & Shougaijam, B.

(2020, November). A Unique design of hybrid full adder for the

application of low power VLSI circuits. In 2020 4th international

conference on electronics, communication and aerospace

technology (ICECA) (pp. 260-264). IEEE.

[14] Mahendran, G. (2024). CMOS full adder cells based on modified

full swing restored complementary pass transistor logic for

energy efficient high speed arithmetic applications. Integration,

95, 102132.

[15] Devi, S., Suhas, N. S., & Vijay, K. A. (2017, February). Design

of full subtractor using DPL logic and MTCMOS technique to

reduce the leakage current and area. In 2017 Second International

Conference on Electrical, Computer and Communication

Technologies (ICECCT) (pp. 1-4). IEEE.

[16] Ding, L., Zhang, Z., Pei, T., Liang, S., Wang, S., Zhou, W., ... &

Peng, L. M. (2012). Carbon nanotube field-effect transistors for

use as pass transistors in integrated logic gates and full subtractor

circuits. ACS nano, 6(5), 4013-4019.

[17] Sharma, T., & Kumre, L. (2017, October). A comparative

performance analysis of CMOS XOR XNOR circuits. In 2017

International Conference on Recent Innovations in Signal

processing and Embedded Systems (RISE) (pp. 473-478). IEEE.

[18] Frontini, L., Shojaii, S., Stabile, A., & Liberali, V. (2012,

December). A new XOR-based Content Addressable Memory

architecture. In 2012 19th IEEE International Conference on

Electronics, Circuits, and Systems (ICECS 2012) (pp. 701-704).

IEEE.

[19] Babu, H., KV, R. R., & Dhanabal, R. (2014, February).

Comparative performance analysis of XOR-XNOR function

based high-speed CMOS full adder circuits. In 2014 International

Conference on Reliability Optimization and Information

Technology (ICROIT) (pp. 432-436). IEEE.

[20] Hossain, R., Wronski, L. D., & Albicki, A. (1994). Low power

design using double edge triggered flip-flops. IEEE transactions

on very large scale integration (VLSI) systems, 2(2), 261-265.

