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Abstract—Omnidirectional (360◦) image quality assessment
(OIQA) has become crucial with the rising popularity of virtual
reality (VR). Despite significant efforts to develop objective OIQA
methods, there is a lack of comprehensive reviews of these
methods, which hinders in-depth understanding and analysis.
This paper presents an extensive survey of objective OIQA
methods, classifying them into three principal types: 2D-plane-
based, sphere-based, and viewport-based methods. We then an-
alyze the limitations of current methods, highlighting challenges
such as insufficient consideration of viewing conditions and
diverse viewing behaviors. Moreover, this paper suggests potential
future research directions, such as multi-modality approaches and
personalized assessments. By systematically reviewing existing
methodologies and proposing potential advancements, this paper
aims to guide future research towards more accurate and efficient
OIQA solutions.

I. INTRODUCTION

The advent of virtual reality (VR) technology, particularly
propelled by advancements in smart wearable devices such
as the Apple Vision Pro, has significantly increased attention
on 360◦ images. These images, created by capturing and
stitching scenes from multiple fisheye lenses, form a complete
360◦ × 180◦ view. When exploring a scene via head-mounted
displays (HMDs), 360◦ images offer an immersive experience
that closely mimics physical presence in the scene. Compared
to traditional 2D images, 360◦ images provide enhanced real-
ism, interactivity, and immersion, steering digital media toward
higher quality and richer information content.

The processing pipeline for 360◦ images encompasses sev-
eral stages, including image capture, stitching and projection,
encoding, transmission, decoding, and rendering [1]. Through-
out these stages, 360◦ images may suffer significant quality
degradation due to various factors, making it challenging to
maintain high-quality outputs. For instance, the visual quality
of 360◦ images is often affected by the accuracy of image
registration, fusion, and projection algorithms. Thus, research-
ing effective methods to automatically provide quantitative
quality indicators for 360◦ images is essential for optimizing
the processing pipeline and ensuring high-quality outputs.

Omnidirectional image quality assessment (OIQA) can be

broadly divided into subjective and objective methods. Subjec-
tive quality assessment involves human subjects who evaluate
the visual quality in controlled experimental environments.
In contrast, objective quality assessment aims to develop
computational models that automatically infer visual quality
by simulating the human visual system [2]–[8], viewing be-
haviors [9]–[12], natural statistical features [13], [14]. De-
spite significant efforts to develop objective OIQA methods,
there is a lack of comprehensive reviews categorizing these
methods and analyzing their limitations and future research
directions [15]. This paper addresses this gap by reviewing
objective OIQA methods from the perspective of common
formats of 360◦ images: 2D projection planes, spheres, and
viewports. Moreover, we discuss the limitations of current
OIQA methods and suggest potential future research directions
to guide future research towards more accurate and efficient
OIQA solutions.

II. OBJECTIVE QUALITY ASSESSMENT OF 360◦ IMAGES

360◦ images can be represented in several ways, primarily
as 2D projection planes, spheres, and viewports (see Fig. 1).
Typically, 360◦ images are stored in a 2D plane format
achieved via equirectangular projection. During viewing, these
images are decoded and reprojected onto a spherical surface
for rendering and display. The viewport, representing the visual
content observed by the viewer at a given moment, can be
extracted using rectilinear projection. Based on these repre-
sentations, current OIQA methods are categorized into 2D-
plane-based, sphere-based, and viewport-based methods. This
section provides a detailed introduction to these categories.

A. 2D-Plane-Based Methods

In the 2D projection plane, 360◦ images can be processed
similarly to traditional 2D images, which allows for the ex-
tension of 2D quality metrics to OIQA. However, different
map projections introduce distinct problems. For instance,
equirectangular projection causes significant shape distortions
near the poles (see Fig. 1). Thus, the fundamental aim of 2D-
plane-based methods is to address the non-uniform sampling



TABLE I
SUMMARY OF OIQA METHODS

Type Model Heuristic Data-driven Scanpath Viewing conditions Weighting allocation Re-sampling

2D-Plane-Based

1CPP-PSNR [16] ✓ ✓
2WS-PSNR [17] ✓ ✓
WS-SSIM [18] ✓ ✓
DeepVR-IQA [19] ✓ ✓
3SAP-Net [2] ✓
Liu23 [20] ✓

Shpere-Based

4S-PSNR [21] ✓ ✓
S-SSIM [6] ✓ ✓ ✓
Sendjasni23 [3] ✓ ✓ ✓

Viewport-Based

5MC360IQA [5] ✓ ✓
6VGCN [4] ✓ ✓
7Sui21 [9] ✓ ✓ ✓ ✓ ✓
Zhou21 [8] ✓ ✓
MFILGN [13] ✓ ✓
MP-BOIQA [14] ✓ ✓
Fang22 [22] ✓ ✓ ✓
Zhang22 [7] ✓ ✓
TVFormer [10] ✓ ✓ ✓ ✓
PW-360IQA [23] ✓ ✓ ✓
8Assessor360 [11] ✓ ✓ ✓ ✓
9GSR-X [12] ✓ ✓ ✓ ✓
Liu24 [24] ✓ ✓ ✓ ✓

Open source (retrieved in July 2024):
1 https://github.com/Samsung/360tools 2 https://github.com/Rouen007/WS-PSNR 3 https://github.com/yanglixiaoshen/SAP-Net 4 https://github.com/Samsung/360tools
5 https://github.com/sunwei925/MC360IQA 6 https://github.com/weizhou-geek/VGCN-PyTorch 7 https://github.com/xiangjieSui/img2video
8 https://github.com/TianheWu/Assessor360 9 https://github.com/xiangjieSui/GSR
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Fig. 1. An illustration of different projection of a 360◦ image.

resulting from sphere-to-plane projection. These methods can
be further divided into heuristic and data-driven approaches
(see Fig. 2).

1) Heuristic Methods: Heuristic methods typically employ
weighting matrices to model the density of sampling points
on the spherical domain. Specifically, given an omnidirec-
tional image Ih×w, a 2D weighting matrix Wh×w is used
to compensate for non-uniform sampling in quality inference:
Q̂ =

∑
(x,y)∈I q̂(x, y)W(x, y), where q̂(x, y) represents the

predicted quality score of the image pixel located at (x, y), and
Q̂ is the predicted overall score of the omnidirectional image.
CPP-PSNR [16] employed Craster Parabolic Projection (CPP)
to guarantee uniform sampling density. Given an initial weight-
ing matrix W = 0, the CPP projection maps uniformly dis-
tributed sample points (ϕ, θ) on the sphere to the corresponding
2D plane coordinates (x, y) by x =

√
3
π θ(2 cos

2ϕ
3 − 1) and

(a1) CPP Projection (a2) Weight Allocation

0

1 Weight

Low

High

Distribution of Sampling Points

2D-Plane-Based Methods

Local Patch

…

Visual Features Quality Inference

Quality

Score

Image

(a) Heuristic Methods

(b) Data-Driven Methods

Fig. 2. Basic strategies of 2D-plane-based OIQA methods.

y =
√
3π sin ϕ

3 . Then, by setting W(x, y) = 1, the point
(x, y) becomes a valid sample for Peak Signal-to-Noise Ratio
(PSNR) calculation. Fig. 2 (a1) shows the resulting weighting
matrix, where the number of sampling points decreases from
the center to the sides, alleviating the oversampling problem
near the poles. Similarly, WS-PSNR [17] and WS-SSIM [18]
assigned weights to all pixels of the 360◦ image. Taking
the equirectangular projection as an example, the value of
W(x, y) can be determined by the corresponding stretch
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Fig. 3. Basic strategies of sphere-based OIQA methods.

ratio: cos y+0.5−h
2

h , where h represents the height of the 360◦

image. Fig. 2 (a2) shows the resulting weighting matrix, where
we can observe that the weight values decrease from the
center to the sides. By considering that quality degradation
leads to structural changes on the 2D projection plane, Liu
et al. [20] proposed using histogram features to measure
structural degradation and combining them with statistical
and saliency features to compute the quality of 360◦ images.
However, they did not consider the non-uniform sampling issue
on the 2D projection plane.

2) Data-Driven Methods: Data-driven methods leverage
deep learning to infer local image patch quality, which is then
aggregated to predict the overall quality of the 360◦ image [2],
[25]. More specifically, the 360◦ image is first divided into N
image patches, which are then input into a pre-trained network
to extract visual features f1:N . Then, these features are fed
into the quality inference module Q to obtain local image
patch quality scores. Finally, a fusion strategy W is designed
to integrate the local quality scores to obtain a global quality
score. Overall, the goal of these methods is to maximize the
prediction accuracy of the network, which could be expressed
by: α∗ = argmaxα p(Q|W(Q(f1),Q(f2), ...,Q(fN ));α),
where Q represents the ground-truth quality label, and α
denotes the learnable parameters of the network.

DeepVR-IQA [25] used ResNet-50 [26] as the visual fea-
ture extraction network and several fully connected layers to
construct the quality inference module. Moreover, a fusion
strategy was proposed to learn the weight of each image patch
by encoding its coordinates. The final overall quality score of
the 360◦ image was obtained by weighted averaging all local
quality scores. SAPNet [2] included a self-supervised image
enhancement module [27], which leveraged discrete wavelet
transform features to enhance the quality of image patches.
Then, the enhanced patches were regarded as “reference im-
ages” for quality inference. Finally, the overall quality of the
360◦ image was obtained by directly averaging the quality
scores of all local image patches.

B. Sphere-Based Methods

Sphere-based methods calculate local quality estimates di-
rectly on the sphere domain, employing either global uniform
sampling or local patch sampling strategies (see Fig. 3).

1) Global Uniform Sampling Methods: Global uniform
sampling methods, such as S-PSNR [21], extracted a large
number (i.e., 655, 362) of predefined uniformly distributed
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Fig. 4. Basic strategies of viewport-based OIQA methods.

sample points on the sphere. The corresponding 2D plane coor-
dinates were computed to retrieve pixel values from distorted
and reference images. Then, PSNR score was calculated to
obtain the overall quality score of the 360◦ image.

2) Local Patch Sampling Methods: By considering that
image patches contain structural information for quality infer-
ence, local patch sampling methods aggregate quality scores
of local image patches (on sphere) to infer the overall quality
of the 360◦ image. For instance, S-SSIM [6] calculated the
Structural Similarity Index Measure (SSIM) [28] scores of
image patches with a circularly symmetric Gaussian weight-
ing function g =

{
gi|

∑11×11
i=1 gi = 1

}
. These scores were

weighted pooling based on coordinate stretch ratios to obtain
an overall quality score. Sendjasni et. al [3] employed Con-
volutional Neural Networks (CNNs) to learn the quality-aware
features of local image patches on the sphere and adaptively
assigned weights to different local image patches based on the
visual saliency map of the 360◦ image, giving higher weights
to the salient regions in quality fusion.

C. Viewport-Based Methods

Given the limited field of view (FoV) in human perception,
focusing only on the quality of the entire images might not
be consistent with human perception. To address this prob-
lem, viewport-based methods assess the perceptual quality of
360◦ images by combining quality scores of viewport images
(see Fig. 4). These methods are categorized into rule-based,
keypoint-based, and scanpath-based approaches based on their
viewport sampling strategies. Rule-based and keypoint-based
methods commonly focus on learning spatial quality features
of viewport images. While scanpath-based methods aim to
model the spatio-temporal quality of 360◦ images by simu-
lating the dynamic viewing experience of users.

1) Rule-Based Methods: Rule-based methods design sam-
pling strategies based on characteristics of 360◦ images. For
example, Fang22 [22] and MC360IQA [5] sampled viewports
at equal intervals, with the number of samples decreasing



from the equator to the poles to maintain a relatively uniform
sampling density (see Fig. 4 (a)). Additionally, MC360IQA
rotated the 360◦ image around the y-axis at equal inter-
vals and repeated the sampling process to augment train-
ing and testing data. In quality inference, both Fang22 [22]
and MC360IQA [5] used ResNet [26] to extract pre-trained
features of viewport images, and employed fully connected
layers to regress these features to quality scores. Notably,
Fang22 [22] encoded the coordinates of the viewport center as
learnable weights to adaptively fuse the quality scores of dif-
ferent viewports. Several studies [8], [13], [14] used cubemap
projection to obtain six minimally overlapping viewport of the
360◦ image. Zhou et al. [8] designed a multi-task learning-
based OIQA quality inference network with quality score
prediction as the main task and distortion type classification as
an auxiliary task. MFILGN [13] and MP-BIQA [14] extracted
statistical features of viewport images, and used support vector
regression[13] or random forest [14] to map the statistical
features to quality scores.

2) Keypoint-Based Methods: Keypoint-based methods com-
monly extract keypoints on the 2D projection plane, and then
extract viewport centered on these points for quality inference,
as illustrated in Fig. 4 (b). VGCN [4] used the Speeded Up
Robust Features (SURF) algorithm [29] to extract 20 key
points for viewport extraction. A graph convolutional network
was constructed to learn the spatial relationships between
viewports to adaptively fuse the quality scores of different
viewport images. Similarly, Zhang et al. [7] used the Oriented
FAST and Rotated BRIEF (ORB) algorithm [30] to extract
keypoints for viewport extraction. By considering the potential
prediction bias cased by relying on local viewports only, the
studies [4], [7] measured the global quality of 360◦ images by
measuring the quality of 2D projection image [4] or the quality
of a set of viewport extracted along hypothetical scanpaths [7].
The final quality score of a 360◦ image was calculated by
combining the local and global quality scores [4], [7].

3) Scanpath-Based Methods: Scanpath-based OIQA meth-
ods aim to predict the perceived quality 360◦ images by
learning the spatio-temporal quality features of the viewport
sequences extracted along scanpaths. The studies [9], [24] pro-
posed OIQA methods based on human scanpath, the quality of
viewport sequences were measured by mature 2D metrics [9]
or the sequence model [24]. TVFormer [10] consisted of a
scanpath prediction network and a quality inference network.
The scanpath prediction network was based on the ViT [31]
architecture, which included a memory unit modeling the
memory mechanism of human. The quality inference network
included the global and local branches, where the global
branch learned quality features from the 2D projection plane,
and the local branch learned spatio-temporal quality features
of viewport sequences. Assessor360 [11] included a scanpath
prediction strategy based on the entropy of viewport images.
This was inspired by that human visual attention tends to focus
on scenes with higher information content. In quality inference,
a CNN-based module was proposed to learn the multi-scale

spatial features of viewport images. Then, these features were
fed into a temporal modeling module to adaptively fuse the
spatial quality-aware features. The study [12] conducted a
unique generative scanpath representation (GSR), which ag-
gregates gaze-focused patches of different hypothesis users at
each moment [32]. This representation provided a compre-
hensive global overview of dynamic perceptual experiences
of multi-hypothesis users. For quality inference, the video
backbone [33] was employed to learn the spatio-temporal
features of GSR sequences for quality inference.

III. LIMITATIONS AND FUTURE DIRECTIONS

A. Limitations

Despite notable advancements in the field of OIQA, several
critical limitations persist. These limitations hinder the com-
prehensive application of OIQA methods, necessitating further
research to address these challenges.

• Overlook of viewing conditions. Current OIQA meth-
ods commonly neglect the impact of varying viewing
conditions, which significantly influence user scanpath
patterns and perceptual quality [9], [34]. Although several
studies [9], [11], [12], [22], [24] have considered factors
such as the starting point of viewing and exploration
time, other critical aspects remain under explored. For
instance, the resolution, FoV, and display constraints
of HMDs can significantly affect the perceptual quality
of 360◦ images [9]. Therefore, a more comprehensive
consideration of these viewing conditions is essential for
developing robust OIQA models.

• Neglect of diverse viewing behaviors. Most OIQA
methods rely on a single, fixed viewport sequence to
predict the perceptual quality of 360◦ images [4], [5],
[7], [8], [10], [13], [14]. Such a deterministic approach
fails to account for the probabilistic nature of human
viewing behaviors, which exhibit considerable variability
and randomness. As a result, these methods may introduce
prediction bias and fail to accurately reflect the perceptual
quality experienced by users. Incorporating models that
simulate diverse and dynamic viewing behaviors is crucial
for enhancing the reliability of OIQA methods.

• High computational complexity. The high computa-
tional complexity of current OIQA methods poses sig-
nificant challenges for real-time applications. One of the
reasons is that the process of extracting viewports is
often cumbersome and time-consuming. For example,
methods such as MC360IQA [5] require the generation
of a substantial number of viewports (e.g., 1, 080) for a
single 360◦ image before performing quality inference.
Similarly, scanpath-based methods [9], [24] demand ex-
tensive viewport extraction. Streamlining these processes
is vital for the practical deployment of OIQA methods in
real-time scenarios.

• Lack of large-scale datasets. There is a notable scarcity
of large-scale annotated datasets for training and evalu-
ating OIQA models. To our best knowledge, the largest



available OIQA dataset [22] comprises only 258 reference
images and 1032 distorted images. Insufficient training
and testing data might limit the generalization ability of
these methods. For example, the performance of OIQA
models, especially those based on natural statistical fea-
tures, is heavily dependent on the diversity and scale of
the training data. Expanding the availability of large-scale
and diverse datasets is critical for advancing the field.

B. Promising Directions

In addition to addressing the above limitations, several
promising directions can be pursued:

• Multi-modality OIQA methods. Developing multi-
modality OIQA methods that integrate various modalities,
such as visual, text (e.g., information of viewing condi-
tions), auditory, and haptic feedback, can provide a more
holistic evaluation of 360◦ image quality. By leveraging
complementary information from different modalities,
these methods can enhance the robustness and accuracy
of quality assessments, offering a deeper insight of the
user experience.

• Personalized OIQA methods. Personalized OIQA meth-
ods that account for individual user preferences and view-
ing behaviors can significantly improve the relevance and
applicability of quality metrics. By tailoring the evalua-
tion process to reflect the subjective quality experiences of
different users, these methods can provide more accurate
and user-specific assessments. This personalization can
be achieved through adaptive models that learn from user
interactions and feedback.

• Quality assessment of generated 360◦ images. The
increasing use of AI techniques to generate 360◦ im-
ages presents unique challenges for quality assessment.
Research in this direction might focus on developing
specialized criteria and algorithms to evaluate the per-
ceptual quality of synthetic content. These methods could
consider multiple dimensions of quality (e.g., authenticity
and fidelity), ensuring that AI-generated 360◦ images
meet high visual standards and provide satisfactory user
experiences.

IV. CONCLUSION

In this survey, we have explored the current landscape of
objective OIQA methods, categorizing them into 2D-plane-
based, sphere-based, and viewport-based approaches. Despite
significant advancements in the field, challenges such as high
computational complexity, limited consideration of diverse
viewing behaviors and viewing conditions, and the scarcity of
large-scale datasets still persist. In addition to addressing these
challenges, we point out several future research directions. By
highlighting these limitations and potential research directions,
we aim to guide future studies towards more precise, efficient,
and comprehensive OIQA solutions. Ultimately, the evolution
of OIQA methods will play a crucial role in advancing
VR technology and improving the quality of experience in
immersive environments.
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