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Abstract—In this paper, we propose a novel method for en-
hancing security in privacy-preserving federated learning under
the use of the vision transformer. In federated learning, learning
is performed by collecting updated information without collecting
raw data from each client. However, the problem is that raw data
may be inferred from updated information. To address this issue,
conventional data guessing countermeasures (security enhance-
ment methods) have a trade-off relationship between privacy
protection strength and learning efficiency, and generally degrade
model performance. In this paper, we propose a novel method of
federated learning that does not degrade model performance and
is robust against data guessing attacks on updated information.
In the proposed method, each client independently prepares a
sequence of binary (0 or 1) random numbers, multiplies it by
the update information, and sends it to the server for model
learning. In experiments, the effectiveness of the proposed method
is confirmed in terms of model performance and resistance to the
APRIL (Attention PRIvacy Leakage) restoration attack.

I. INTRODUCTION

The rapid development of AI technology accelerates the
growth of business and services that use deep learning. How-
ever, training a model with many parameters requires a large
amount of training data, and preparation of training data takes
a lot of time and effort. Additionally, we have to take into
account the privacy information contained in the training data.
To address this issue, federated learning, which is a distributed
learning method, has attracted much attention [1].

In federated learning, multiple parties cooperate for deep
learning, as shown in Fig. 1. Here, we define a server as
a party that provides a model and clients as parties that
have training data. Each client independently trains a model
shared by the server using its own training data. The clients
send their updated information obtained through the training
to the server, and the server integrates all the information
to update the model. As described above, federated learning
can efficiently train high-performance models with a large
number of parameters. On the other hand, attacks [2]–[5] have
been proposed to infer training data based on such updated
information.

For this reason, security enhancement methods have been
actively researched to protect privacy against such attacks.
A method [6] can compute in the encryption domain by
using homomorphic cryptography [7] and retain the accuracy,
while being computationally expensive. In another method
[8], updated information is concealed by combining model
subsampling, model shuffling, and blanket noise. The method
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Fig. 1. Overview of federated learning

is, however, vulnerable to collusions between a server and a
party shuffling the model. Consequently, this approach causes a
reduction in the accuracy. There is a different type of methods
based on differential privacy [9]–[13]. In this type of methods,
each client adds a random number sequence following a
specific distribution to the update information. In order to
enhance security, however, the variance of the distribution
has to be enlarged. Thus, the model performance should be
commonly decreased.

There also exist researches on the use of the Vision Trans-
former (ViT) [14] for federated learning. ViT is an image clas-
sification model known for its high performance. On another
front, a gradient leakage attack called Attention Privacy Leak-
age (APRIL) [5], which attempts to recover training images
based on updated information of ViT, has become a serious
problem. Against APRIL, Aso et al. proposed an effective
model encryption method [15]. This method maintains the
accuracy but does not possess resistance against attacks from
internal parties such as clients. Lu et al. locked the positional
embedded layer of ViT to prevent it from being updated [5].
Although this method is robust against internal attacks, the
performance is degraded when using a model without pre-
training.

To tackle the above issue, we propose a novel security
enhancement method for ViT-based federated learning with-
out performance deterioration. In the proposed method, each
gradient of ViT is multiplied by random binary weights, and
all parameters including those in the positional embedded
layer can be updated. Simulation results show the effectiveness
of our method through the evaluation on the classification
accuracy and resistance against APRIL.



II. PREPARATION

We enhance security on federated leaning with ViT, assum-
ing APRIL as a gradient leakage attack. In this section, we first
give brief explanations of ViT and APRIL, and then summarize
several previous methods that have resisitance against gradient
leakage attacks.

A. Vision Transformer

ViT with self-attention mechanisms has attracted much
attention for its high performance in the field of image
recognition and classification [14]. On the other hand, in the
federated learning field, there have been studies on attacks
targeting ViT, and a powerful restoration attack called APRIL
has been proposed [5].

Fig. 2(a) illustrates the procedure of ViT. ViT first divides an
input image x ∈ RH×W×C into patches xs

p ∈ RP 2×C , where
H , W , and C are the height, width, and number of channels.
S, s ∈ {1, 2, · · · , S} and P are the number of patches, the
number assigned to the patch, and the height and width of
the patch, respectively. A linear layer E ∈ R(P 2×C)×D then
dimensionally transforms each patch to be adequate for the
Transformer Encoder layer. Note that D represents the vector
length after embedding. In addition, a class token xclass ∈
RD is set at the beginning of the patches to represent the
features of the entire image. Next, the positional embedded
layer Epos ∈ R(S+1)×D embeds information about the location
relationship among class tokens and patches. The calculated
result z0 ∈ R(S+1)×D is given by

z0 = [xclass;x
1
PE;x2

PE; · · · ;xS
PE] + Epos, (1)

and input to the Transformer Encoder layer.
As shown in Fig. 2(b), the Transformer Encoder layer is

further decomposed into three layers: Layer Normalization
(Norm), Multi-head Self-Attention (MSA), and Multi-Layer
Perceptron (MLP). Let zl−1 be the input and zl be the output
in the Transformer Encoder layer in the l ∈ {1, 2, · · · , L}-th
layer. We explain the calculation process to obtain zl from zl−1

in the l-th Transformer Encoder layer. First, zl−1 is normalized
by LN. In LN, the output LN(zl−1) is obtained by

LN(zl−1) = γ
zl−1 − E[zl−1]√
V ar[zl−1] + ϵ

+ β, (2)

where γ and β are learnable parameters, and ϵ is a small
constant to ensure that the denominator never takes zero.
Next, MSA carries out the computation to obtain the output
SA(LN(zl−1)) by using multiple Self Attentions (SAs):

SA(LN(zl−1)) = softmax

(
qlk

T
l√

Dh

)
vl. (3)

In the computation of SA, (ql, kl, vl) for input LN(zl−1) are
determined by 

ql = LN(zl−1)Uql,

kl = LN(zl−1)Ukl,

vl = LN(zl−1)Uvl,

(4)
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Fig. 2. ViT structure

Here, (Uql, Ukl, Uvl) ∈ RD×Dh are learnable matrices in l-th
SA layer, and Dh is the vector length D divided by the number
of heads. Additionally, (ql, kl, vl) are the input queries, keys,
and values linearly transformed by (Uql, Ukl, Uvl). From (3),
in MSA, the output MSA(LN(zl−1)) is given by

MSA(LN(zl−1)) =
[
SA1;SA2; · · · ;SAT ,

]
Umsa, (5)

where SAt is the output of the t ∈ {1, 2, · · · , T}-th SA and
Umsa ∈ Rk·Dh×D is the matrix to return the shape of the MSA
output to that of the input. According to (5), in Transformer
Encoder layer, the output zl is obtained by

zl =MLP (LN(z′l)) + z′l,

where z′l = MSA(LN(zl−1)) + zl−1.
(6)

Finally, we obtain the output y of ViT that can be calculated
from LN by inputting only the class token z0l from the outputs
of the L-th Transformer Encoder layer.

y = LN(z0l ). (7)

ViT predicts the label of the input image based on the output
y.

B. Attention Privacy Leakage

In federated learning, methods for updating a model can
be broadly classified into two categories: Federated Stochastic
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Fig. 3. Update of gradients

Gradient Descent (FedSGD) and Federated Averaging (Fe-
dAvg) [1]. There is a gradient leakage attack called APRIL
[5] that uses updated information to infer input images. APRIL
targets FedSGD-based learning using ViT. We summarize the
attack below.

First, attackers calculate the input to the Transformer En-
coder layer z0:

∂l

∂z0
zT0 = UT

q1 ·
∂l

∂Uq1
+ UT

v1 ·
∂l

∂Uv1
+ UT

k1 ·
∂l

∂Uk1
,

∂l

∂z0
=

∂l

∂Epos
.

(8)

Here, ∂l
∂∗ is the gradient of the parameter ∗ on the loss function.

Next, the inferred image x′ is obtained by inversion of (1):

x′ = E × (z0 − Epos)
T . (9)

In (9), E and Epos refer to the parameters of the global model
before being updated. APRIL attempts to recontruct the input
images for learning by the above procedure.

C. Previous Method
Several security enhancement methods for federated learn-

ing have been proposed. A representative method is differ-
ential privacy [9]–[13]. In differential privacy, we add noise

to the updated information so as to enhance security at a
low computational cost. However, differential privacy certainly
degrades model performance. Another method lets a third party
to scrambles the updated information for high anonymity of
each client [8]. This approach requires the assumption that the
third party is absolutely credible.

In contrast, there is another security enhancement method
for federated learning with ViT, which is called fixed-posional
method [5]. This method is implemented assuming FedSGD.
In FedSGD, the update of parameters is expressed by

wm+1
A,i = wm

A,i − η

∑N
n=1 θ

n,m
A,i

N
, (10)

where wm
A,i+1 and wm

A,i are the i-th global model parameters
of the A-th layer after m + 1-th or m-th updates, η is the
learning rate, N is the number of clients, and θn,mA,i is the
gradient to update wm

A,i calculated by the n-th client. The
parameter update is carried out for each batch training. Fig.
3(a) depicts the gradients obtained from training using a plain
FedSGD. In this figure, Max is the number of gradients in
each layer.

The fixed-positional method enhances security while not
learning the positional embedded layer. Fig. 3(b) indicates
gradients transmitted in federated learning with the fixed-
positional method. All the gradients in the positional embedded
layer are changed to 0. In this case, the learning process is
described as follows.

Step1: A server sends global model information
to each client.

Step2: Each client trains each local model using
his/her own dataset.

Step3: Each client converts gradients in the posi-
tional embedded layer to 0.

Step4: Each client sends the updated gradients to
the server.

Step5: The server integrates the information sent
from all the clients and updates the global
model.

We repeat the steps a specified number of times. The fixed-
positional method is highly robust against APRIL. The attacker
can be a server, one of clients, or an external third party; the
security enhancement method is effective against all of them.
The method, however, changes all gradients in the positional
embedded layer to zero, so we cannot update the parameters.
This leads to severe degradation of model performance when
learning a model without pre-training.

III. PROPOSED METHOD

We propose a new method to enhance security for federated
learning using ViT. The proposed method is robust against
APRIL without affecting model performance.

A. Main procedure

A series of the following steps is a procedure of federated
learning to which the proposed method is applied.



Step1: A server sends global model information
to each client.

Step2: Each client trains each local model using
his/her own dataset.

Step3: Each client multiplies gradients by a ran-
dom binary sequence.

Step4: Each client sends the updated gradients to
the server.

Step5: The server integrates the information sent
from all the clients and updates the global
model.

We repeat this procedure a predefined number of times. The
main different from the previous method [5] is Step 3. Next,
we explain Steps 3 and 5 in more detail.

B. Multiplication of Random Binary Weights

Fig. 3(c) illustrates a simplified gradient processing for each
layer of ViT in the proposed method. In Step 3, each client
multiplies gradients by random binary weights Bn,m

A,i ∈ {0, 1}.
Here, a weighted gradient θn,m

′

A,i is given by

θn,m
′

A,i = Bn,m
A,i × θn,mA,i , (11)

where Bn,m
A,i is a binary weight that is multiplied by θn,mA,i . In

the case that the occurrence probability of zeros R ∈ [0, 1] is
set higher, more robust privacy protection would be provided;
however, the model may not be updated correctly. We tackle
this issue by changing the random binary weights Bn,m

A,i at
each epoch.

It is possible to define a different probability for each layer.
The positional embedded layer Epos and linear layer E are
layers that include major information of the image, so APRIL
uses these layers for image restoration. Thus, for instance,
it would be useful to assign high probabilities for Epos and
E, while assigning low probabilities for other gradients. In
this paper, we apply the same probabilities R to all layers to
simplify argument.

C. Gradient Integration

Next, we elaborate gradient integration in Step 5. The
proposed method integrates gradients based on FedSGD. How-
ever, it is not appropriate to directly apply (10) to the proposed
method because each client randomly converts the gradients to
0. The gradient integration is implemented as:

wm+1
A,i =

wm
A,i − η

∑N
n=1 θn,m′

A,i∑N
n=1 Bn,m

A,i

if 0 <
∑N

n=1 B
n,m
A,i ≤ N

wm
A,i if

∑N
n=1 B

n,m
A,i = 0.

(12)
Note that zero gradients are excluded when calculating the
mean of the gradients. As an exception, parameters cannot be
updated in the case of

∑N
n=1 B

n,m
A,i = 0.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we clarify the effectiveness of the proposed
method through the experiments from the aspects of attack
resistance and model performance.

TABLE I: Fundamental conditions

# of clients 5
Pre-trained model vit small patch16 224

Patch size 16
Learning rate 0.0001

Dataset CIFAR10
Occurrence probability of zeros 0.2, 0.5, and 0.8

(a) Training image (b) Normal learning (c) Fixed-positional
method

(d) Proposed method
(R=0.2)

(e) Proposed method
(R=0.5)

(f) Proposed method
(R=0.8)

Fig. 4. Inferred images by APRIL

A. Setup

Table I lists the fundamental conditions of our exper-
ments. We virtually configured a server and five clients
on a single machine. For a pre-trained model, we used
vit small patch16 224, where the patch size P and learning
rate η were 16 and 0.0001, respectively. We futher set the
occurrence probability of zeros R to 0.2, 0.5, and 0.8. The
experiments were conducted using the CIFAR10 dataset that
consists of 50,000 training images and 10,000 test images. The
CIFAR10 images were resized from 32×32×3 to 224×224×3
by bilinear transformation to correspond to the input size of
ViT.

We used 16 images from the CIFAR10 dataset to evaluate
robustness against APRIL. The code of APRIL is referenced
from [16]. The images were input to the model fine-tuned with
CIFAR10, and the inferred images were generated by APRIL
from updated information.

Additionally, we evaluated model performance. Using a pre-
trained model using Image-Net and another model without pre-
training, we verified classification accuracy using the 10,000
test images at the end of each epoch.

B. Robustness against APRIL

Fig. 4 depicts the restoration results by APRIL using the
updated information. Fig. 4(a) is a training image, while 4(b)
is an inferred image when using a plain model. In such a
case, the visual information of the training image was fully
disclosed by APRIL. In contrast, as shown in Fig. 4(c),
the fixed-positional method prevented APRIL from successful
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Fig. 5. Comparison of classification accuracy

restoration. Similarly, from Fig. 4(d), (e), and (f), which are
the inferred images in the proposed method, it was difficult
for APRIL to successfully restore the training image even at
R = 0.2. Thus, we can claim that the proposed method is as
robust to APRIL as the fixed-positional method.

C. Image Classification Performance

We assess the influence of security enhancement by the pro-
posed and fixed-positional methods on classification accuracy.
Fig. 5(b) shows the transition of classification accuracy for
each epoch in the case of using a pre-trained model. In this
figure, the baseline is federated learning with a plain model.
It is clear that both the proposed and fixed-positional methods
retain the analogous accuracy as the baseline.

On another front, Fig. 5(c) is the transition of classification
accuracy for each epoch using a model without pre-training.
Although the proposed method could maintain the accuracy,
the fixed-positional method significantly reduced the accuracy.
In the case of using a model without pre-training, we should
update all layers of ViT because the initial parameters are
not generally suitable to classify desired images. The fixed-
positional method does not update the positional embedded
layer; this is the reason for the reduction of the accuracy. In
contrast, the proposed method updates all the layers, so the
accuracy can be improved.

D. Discussion

We discuss the reason why the classification accuracy was
not degraded in the proposed method. If the random binary
weight of each client for a given parameter is zero, the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

P
ro

b
ab

ili
ty

 P
(f
)

Update counts f

proposed (R=0.2)

locked weights (R=0.2)

fixed-positional

Baseline

(a) R = 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

P
ro

b
ab

ili
ty

 P
(f
)

Update counts f

proposed (R=0.5)

locked weights (R=0.5)

fixed-positional

Baseline

(b) R = 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

P
ro

b
ab

ili
ty

 P
(f
)

Update counts f

proposed (R=0.8)

locked weights (R=0.8)

fixed-positional

Baseline

(c) R = 0.8
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parameter is not updated. Thus, in the case that each client
use a common sequence of random binary weights throughout
all the epochs, some of the parameters may never be updated.
We call this a locked binary weights method. In contrast, in
the proposed method, the clients use a different sequence of
random binary weights varying from epoch to epoch. This
significantly reduces the probability that parameters will never
be updated. In the proposed method, the probability P (f) that
the parameter is updated f times is obtained by

P (f) = mCf × (1−Rn)f ×Rn×(1−f), (13)

where m, R, and n denote the number of epochs, the oc-
currence probability of zeros, and the number of clients,
respectively. From this equation, the update frequency of each
parameter will get larger as the number of clients and epochs
increases. Consequently, the proposed method is expected to
train the model more effectively compared to the locked binary
weights method.



Fig. 6 shows the probability distribution of update counts
with m = 10 and n = 5. Here, in the proposed method
and the locked binary weights method, R was defined as
0.2, 0.5, and 0.8. From this results, it is clear that most of
all parameters were constantly updated through 10 epochs
in the fixed-positional method. This method, however, never
updates the positional embedded layer. The updates of the
positional embedded layer is important to improve classifi-
cation accuracy, so the fixed-positional method degrades the
accuracy. Note that it is difficult to recognize this in Fig.6,
since the number of the parameters in the positional embedded
layer is significantly small. The proposed method has a large
number of updated parameters, while not as large as the
fixed-positional method. Since no-updated parameters are not
concentrated in a particular layer, our method can also attained
the updates of positional embedded layer, which is the serious
issue in the fixed-positional method. Furthermore, the use
of independent sequence of binary weights for each epoch
enabled the proposed method to update more parameters than
the locked binary weights method at the defined values of
R in this section, that is R = 0.2, 0.5, and, 0.8. For these
reasons, the proposed method provides not only enhanced
security against attacks but also updates of a large number
of parameters.

V. CONCLUSION

We propose a new security enhancement method for ViT-
based federated learning. Most previous methods involved
degradation of classification accuracy. The proposed method
not only to solve this issue but also attain to be robust to the
APRIL attack by multiplying updated information by random
binary weights. Through our simulations, we confirmed the
resistance to APRIL and retention of model performance. Our
future work involves application of this method to other models
such as CNN models.
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