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Abstract—This paper deals with subspace clustering for a
matrix completion, which is a problem of estimating missing
entries in a matrix under the assumption that row or column
vectors belongs to multiple low-dimensional linear spaces. Various
methods for the problem have been proposed. Some of them
assume that row or column vectors in a matrix can be divided
into several clusters where vectors span a low-dimensional linear
space and provide mathematical optimization techniques which
divide a matrix into several smaller low rank matrices. However,
the performance of these approaches depends on the initial values
and conditions, and the accuracy of a matrix completion becomes
worse when each subspace is not strictly low-dimensional due to
noise. In order to improve the accuracy of a matrix completion,
this paper proposes a method to reduce the dependence of
initial values and to enhance robustness against noise. Numerical
examples show that the proposed method achieves higher accu-
racy in subspace clustering and matrix completion compared to
conventional methods.

I. INTRODUCTION

This paper deals with subspace clustering for matrix com-
pletion, which is a problem of estimating missing entries in
a matrix under the assumption that row or column vectors
belongs to multiple low-dimensional linear spaces. While low-
rank matrix approaches [1], [2], [3] have been proposed for a
matrix completion, these approaches are effective for the case
that row or column vectors belong to a single low-dimensional
linear space and do not work well when they belong to multiple
low-dimensional linear spaces. Since a matrix completion with
multiple low-dimensional linear spaces has more practical
applications, this paper deals with a matrix completion method
with subspace clustering. Recently, a matrix completion with
subspace clustering has been used in various signal process-
ing applications, including speech restoration [4] and image
restoration [5].

Some mathematical optimization-based methods have been
proposed for a matrix completion with subspace clustering [5],
[6]. In [6] kernel method is applied and estimates missing
entries in a matrix by minimizing the rank of the kernel
matrix. This method works well when both the dimensions
of each subspace and the degree of a monomial are small, and
requires a huge number of data (number of row or columns
in a matrix) to achieve high completion accuracy. In [5] a
matrix completion with subspace clustering is formulated as a
problem of finding combinations of row or column vectors
to divide a given matrix into several low-rank submatrices
with estimating missing entries. An alternating optimization
method is proposed to solve this problem and works well when

a matrix is correctly divided into submatrices. However, its
performance depends on the initial values and noise.

In order to improve the accuracy of a matrix completion, this
paper proposes a method to reduce the dependence of initial
values and to enhance robustness against noise. Numerical
examples show that the proposed method achieves higher ac-
curacy in subspace clustering and matrix completion compared
to existing methods [5].

II. SUBSPACE CLUSTERING

We consider subspace clustering which a problem of finding
L low-dimensional linear subspaces consisting of column vec-
tors in a matrix X ∈ RM×N . Takahashi et al. [5] formulated
this problem as follows using the truncated nuclear norm [7],

Find
{
D(i)

}L

i=1

subject to
∥∥∥XD(i)

∥∥∥
∗,ri
≤ εi, i = 1, 2, . . . , L,

L∑
i=1

D(i) = I,

(D(i))j,j ∈ {0, 1},

(1)

where I is the identity matrix, D(i) ∈ [0, 1]N×N denotes
diagonal matrices, and ∥ · ∥∗,r represents the truncated nuclear
norm, which is the sum of the first (largest) singular value
to the rth singular value of a matrix. D(i) has diagonal
elements that are 0 or 1, and their sum equals the identity
matrix. Using such D(i), XD(i) becomes a matrix where the
columns of X corresponding to the indices where the diagonal
elements of D(i) are 0 become zero vectors. Consequently,
XD(i) represents a matrix that retains only the elements
of the original column vectors corresponding to the indices
where the diagonal elements of D(i) are 1, generating pseudo-
submatrices corresponding to each subspace. The problem (1)
describes the subspace clustering problem by imposing a low-
rank constraint on these pseudo-submatrices XD(i) using the
truncated nuclear norm. If the constant εi is 0, it equals to
a strict low-rank constraint where the rank of XD(i) equal
to ri. However, in practical applications, even if D(i) is
ideally obtained, XD(i) is rarely exact low-rank. Therefore
Takahashi et al. [5] formulated the problem to perform low-
rank approximation of XD(i) by setting εi to accommodate
noise in the data. However, it is difficult to find D(i) such
that the truncated nuclear norm of XD(i) is less than a certain
value. Therefore they relaxed this problem by formulating it



as an objective function:

Minimize
L∑

i=1

∥XD(i)∥∗,ri

subject to
L∑

i=1

D(i) = I,

(D(i))j,j ∈ {0, 1}.

(2)

However, there are two issues in obtaining a solution of this
problem. The first issue arises from the constraints (D(i))j,j ∈
{0, 1}, that is, the problem is a 0− 1 combinatorial optimiza-
tion. The second issue is related to the minimization of the
truncated nuclear norm. Even if (D(i))j,js take continuous
values, there is no practical method to minimize ∥XD(i)∥ri .
Hence, based on the idea in [7], Takahashi et al. [5] formulated
the following optimization problem using auxiliary variables
Z(i):

Minimize f
(
X, {Z(i)}Li=1, {D(i)}Li=1

)
subject to

L∑
i=1

D(i) = I,

(D(i))j,j ∈ [0, 1].

(3)

where, the objective function f is given by

f
(
X, {Z(i)}Li=1, {D(i)}Li=1

)
=

L∑
i=1

(
1

2
∥Z(i) −XD(i)∥2F + λ∥Z(i)∥∗,ri

)
,

(4)

where a tehnique of the alternating direction method of mul-
tiplier (ADMM) is utilized, and its solution can be obtained
through alternating optimization of D(i) and Z(i). Takahashi
et al. [5] finally proposed the following subspace clustering
method based on the iterative method of mathematical opti-
mization as the minimization algorithm:

Z(i) ← Sri(XD(i)) for i = 1, · · · , L, (5)

(D(i))j,j ←
1

L

(
1−

L∑
l=1

⟨xj , z
(l)
j ⟩

⟨xj ,x
(l)
j ⟩

)
+
⟨xj , z

(i)
j ⟩

⟨xj ,xj⟩
(6)

for i = 1, · · · , L, j = 1, · · · , N,

where ⟨, ⟩ denotes the inner product of vectors, and xj and z
(i)
j

represent the j-th column vectors of X and Z(i), respectively.
Sr,λ denotes a soft thresholding operator that decreases the
singular values which are smaller than rth singular value by
λ [7]. This thresholding operator gives Z(i) which minimizes
the objective function for the given D(i). Subsequently, the
above procedure provides (D(i))j,j using the cosine similarity
⟨xj , z

(i)
j ⟩/⟨xj ,xj⟩ of (6). The closer the cosine similarity

between the reduced non-principal components z
(i)
j and the

original vector xj is to 1, the closer (D(i))j,j is to 1. In

Algorithm 1 Matrix completion based on subspace clustering
using the truncated nuclear norm [5]
Require: X,Ω, L, α, ηα, γ, tmax

1: t← 0

2: repeat
3: α← α/ηα

4: t← t+ 1

5: for i = 1 to L do
6: [U, S, V ]← svd(XD(i))

7: r ← argmax
r̂

Sr̂,r̂ s.t. Sr̂,r̂ > αS1,1

8: Sj,j ← min (Sj,j − γSr,r, 0) for j > r

9: Z(i) ← USV T

10: end for
11: for i = 1 to L, j = 1 to N do

12: (D(i))j,j ← 1
L

(
1−

∑L
l=1

⟨xj ,z
(l)
j ⟩

⟨xj ,x
(l)
j ⟩

)
+

⟨xj ,z
(i)
j ⟩

⟨xj ,xj⟩

13: end for

14: X ←

(
L∑

i=1

Z(i)D(i)

)(
L∑

l=1

D(l)2

)−1

15: xm,n ← x∗
m,n for (m,n) ∈ Ω

16: until tmax < t

Ensure: X .

other words, XD(i) obtained through appropriate partitioning
tends to have its non-principal components close to 0, making
this cosine similarity close to 1. Equation (6) also finds D(i)

that minimizes the objective function similarly to (5), and
alternating these operations always leads to a quasi-optimal
solution.

Next we consider a matrix completion with subspace cluster-
ing. For matrix completion, we can modify the above method
by adding the constraint xm,n = x∗

m,n for (m,n) ∈ Ω to (3),
where Ω denotes the index set of known elements, and x∗

m,n

represents the known elements. As an optimization method
for the problem with the additional constraints, Takahashi et
al. [5] proposed an optimization method for X using the Z(i)

and D(i) obtained from (5) and (6). For the optimization of
X , a simple quadratic optimization can be performed using
the following update formula:

X ←

(
L∑

i=1

Z(i)D(i)

)(
L∑

l=1

D(l)2

)−1

xm,n ← x∗
m,n for (m,n) ∈ Ω

(7)

Finally, Algorithm 1 is obtained. Note that α and ηα in
Algorithm 1 represent parameters for estimating the matrix
rank r in line 7. Details are written in [7]. While this works
well, the clustering accuracy deteriorates if the initial values
of D(i) are not appropriate, For example, if D

(i)
j,j is set to 0,

xjD
(i)
j,j becomes a zero vector, and z

(i)
j is also calculated as a

zero vector, resulting in a cosine similarity of 0 regardless
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of whether xj belongs to the i-th cluster. Therefore, this
algorithm depends on the initial values of D(i). Furthermore,
numerical examples show that the algorithm often fails to
estimate D(i) if there exists noise in X .

III. PROPOSED METHOD

This section proposes a new subspace clustering method.
The original idea of subspace clustering is to find the sub-
spaces related to each cluster and the data belonging to those
subspaces. In the method by Takahashi et al. [5], auxiliary vari-
ables Z(i) are used to represent these subspaces. Ideally, the
column space of Z(i) matches each target subspace. However,
as mentioned above, the deterioration of clustering accuracy
derives from the use of auxiliary variables Z(i). Therefore,
this paper formulates the following optimization problem using
auxiliary variables U (i) ∈ RM×r that can directly represent the
column space to represent the subspaces.

Minimize g
(
X, {D(i)}Li=1, {U (i)}Li=1

)
subject to

L∑
i=1

D(i) = I

D(i) ∈ {0, 1}
U (i)TU (i) = I

(8)

g
(
X, {D(i)}Li=1, {U (i)}Li=1

)
=

L∑
i=1

N∑
j=1

D
(i)
j,j

∥∥∥(I − U (i)U (i)T
)
xj

∥∥∥2
2

=

L∑
i=1

∥∥∥(I − U (i)U (i)T
)
XD(i)

∥∥∥2
F

(9)

The idea of minimizing the Frobenius norm to minimize the
matrix rank is originally proposed in [3], and minimizing the
objective function g is equivalent to minimizing the rank of the
submatrix XD(i). A solution of this problem can be obtained
by alternating optimization as follows,

[Ũ , S̃, Ṽ ] ← svd(XD(i))

U (i) ← Ũ:,1:r

for i = 1, · · · , L
(10)

(D(i))j,j ←

 1 if i = argmin
î

∥∥∥(I − U (̂i)U (̂i)
T)

xj

∥∥∥2
2

0 otherwise
for j = 1, · · · , N

(11)

where A:,1:r denotes the matrix formed by the first to r-th
columns of the matrix A. The singular values S̃j,j obtained
by the singular value decomposition svd(XD(i)) are assumed
to be arranged in descending order. The above equations are
methods for alternately solving for U (i) and D(i). Let us
consider the problem of minimizing (9) with respect to U (i)

for given D(i). Based on classical theorems concerning matri-

Algorithm 2 Adaptive subspace reconstruction algorithm (pro-
posed method)
Require: X,L, tmax

1: for r = 1 to M − 1 do
2: t← 0

3: repeat
4: t← t+ 1

5: D
(i)
old ← D(i) for i = 1, · · · , L

6: for i = 1 to L do
7: [Ũ , S̃, Ṽ ]← svd(XD(i))

8: U (i) ← Ũ:,1:r

9: end for
10: for i = 1 to L, j = 1 to N do
11: (D(i))j,j ← 1

12: if i = argmin
î

∥∥∥(I − U (̂i)U (̂i)
T)

xj

∥∥∥2
2

13: 0 otherwise
14: end for
15: until tmax < t or D(i) = D

(i)
old

16: end for
Ensure: {D(i)}Li=1.

ces [8], the optimal solution can be obtained through singular
value decomposition of the matrix. Let XD(i) be decomposed
as XD(i) = Ũ S̃Ṽ T , then the optimal solution U (i) is equal to
the matrix formed by the column vectors corresponding to the
first to r-th principal components of Ũ . Next we consider the
problem of minimizing (9) with respect to D(i) for given U (i).
This problem can be performed independently for each j, and
the minimum solution is obtained by setting (D(i))j,j = 1 for
the i that minimizes ∥(I − U (i)U (i)T )xj∥22 and 0 otherwise.
By repeating the above two schemes until D(i) converges, a
solution can be obtained. In practice, since r is unknown, we
propose a method that starts with r = 1 and iteratively repeats
the above schemes. Finally this paper proposes Algorithm
2. An advantage of Algorithm 2 is that it requires fewer
parameters to be specified compared to existing methods.

As described in section 2, we consider performing matrix
completion using subspace clustering with Algorithm 2. If
D(i) is appropriately obtained by Algorithm 2, the matrix
completion problem can be solved by imposing the constraint
xm,n = x∗

m,n for (m,n) ∈ Ω on (8), and minimizing (9) with
respect to X , which performs matrix rank minimization within
each cluster. Based on this idea, we present Algorithm 3 for
matrix completion with subspace clustering, where the trun-
cated nuclear norm minimization is applied. In this algorithm,
it is not necessary to update D(i) if there is no significant
change in X , and therefore the algorithm executes Algorithm
2 only when there is a significant change in X .
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Algorithm 3 Matrix completion using adaptive subspace re-
construction algorithm (proposed method)
Require: X,Ω, L, α, ηα, γ, tmax

1: t← 0

2: rmax ← 1, rmaxold ← 0

3: repeat
4: t← t+ 1

5: if rmax ̸= rmaxold then
6: obtain {D(i)}Li=1 using Algorithm 2
7: end if
8: for i = 1 to L do
9: [U, S, V ]← svd(XD(i))

10: ri ← argmax
r̂

Sr̂,r̂ s.t. Sr̂,r̂ > αS1,1

11: Sj,j ← min (Sj,j − γSri,ri , 0) for j > ri

12: Z(i) ← USV T

13: end for

14: X ←
L∑

i=1

Z(i)

15: xm,n ← x∗
m,n for (m,n) ∈ Ω

16: rmaxold ← rmax

17: rmax ← max ri

18: until tmax < t

Ensure: X .

IV. NUMERICAL EXAMPLES

This section demonstrates the effectiveness of the proposed
algorithm by comparing with Algorithm 1. In order to confirm
how the estimation accuracy changes with the matrix rank,
we apply algorithms with matrix ranks r = 10, 11, · · · , 15. In
all experiments, matrix size is set to 150× 150, and the total
number of clusters is set to 50.

First, we compare the estimation accuracy of subspace
clustering. Assuming that the true matrix X is given, we
examine performances of subspace clustering for matrices
with no missing entries. White noise SNR = 20 is added
to each column vector of the matrix, and Algorithm 1 and
Algorithm 2 are applied. The maximum number of iterations
tmax for both alfgorithms is set to tmax = 1, 000, and
the estimation accuracy of D(i) is compared. Since the D(i)

obtained by Algorithm 1 can take values in [0, 1], we calculate
the confusion matrix C with respect to the true value D

(i)
true

as Ck,l =
∑N

j=1(D
(k))j,j(D

(l)
true)j,j , and compare the inverse

condition number of this matrix. If D(i) has even one different
entry from an entry of D(i)

true, the inverse condition number of
C will be 0.972 or less. Table 1 shows the average of the
inverse condition numbers of C obtained over 100 trials for
each method. From this table, it can be seen that the proposed
method performs subspace clustering with sufficient accuracy
for noise existing case.

Next we compare Algorithm 1 with Algorithm 3 for matrix

TABLE I
AVERAGE OF THE INVERSE CONDITION NUMBERS OF CONFUSION MATRIX

C OBTAINED BY SUBSPACE CLUSTERING IN 100 TRIALS

Method \ rank r 10 11 12 13 14 15
Algorithm 1 [5] 0.16 0.19 0.22 0.18 0.19 0.20

Algorithm 2 1.00 1.00 1.00 1.00 0.98 0.97

completion with subspace clustering ith a missing rate of 50%.
Similar to Table 1, we conducted 100 trials and calculated the
average normalized mean square error (NMSE) between the
matrix X obtained by each algorithm and the true value X∗.

NMSE =
∑

(m,n)/∈Ω

(xm,n − x∗
m,n)

2 /
∑

(m,n)/∈Ω

(x∗
m,n)

2

Figure 1 shows the NMSE of each algorithm. As can be seen
from the figure, Algorithm 1 gives a significant deterioration
in completion accuracy for r ≥ 12, while the proposed method
maintains an NMSE of less than 0.1 for all ranks. These results
demonstrate the effectiveness of the proposed method.

V. CONCLUSIONS

This paper deals with subspace clustering for matrix com-
pletion. One of the existing methods is the subspace clustering
method using an optimization problem with the truncated
nuclear norm. This method is based on mathematical optimiza-
tion and has the advantage of guaranteeing a quasi-optimal
solution. However, due to the nature of the algorithm, it tends
to depend on initial values and is strongly affected by noise,
which can result in degraded matrix completion accuracy.
This paper proposes a new subspace clustering method using
auxiliary variables representing each subspace and apply it
to matrix completion. Numerical experiments demonstrated
that the proposed method showed higher estimation accuracy
compared to existing methods.
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