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Abstract—Preventing postoperative delirium is of great impor-
tance because its onset causes significant social and health prob-
lems. We aimed to develop a model to predict the postoperative
delirium using data measured preoperatively with electrocardio-
gram (ECG) sensors and simplified electroencephalogram (EEG)
devices in a less invasive situation. The data were collected from
patients undergoing oral surgery, specifically from 59 patients
(including 8 who developed delirium) from 9 AM until 1 PM and
56 patients (including 8 who developed delirium) from 4 PM until
bedtime. We developed binary classification models using support
vector machine (SVM) and random forest (RF). We tested three
patterns of input variables: EEG indicators, heart rate variability
(HRV) indicators, and both. Finally, the SVM model with both
indicators was able to predict with a sensitivity of 0.63 and a
specificity of 0.69.

I. INTRODUCTION

Delirium is a severe neuropsychiatric syndrome character-
ized by a sudden decline in cognitive function and attention.
Patients often experience altered states of wakefulness, ranging
from reduced responsiveness to severe agitation. This condition
is frequently accompanied by symptoms such as delusions,
hallucinations, and mood changes [1].

The onset of delirium results in numerous adverse effects. In
the United States, it is estimated that the extension of hospital
stays due to delirium costs an additional 38 billion dollars
annually [2]. Furthermore, an increase in mortality rates has
been reported, with delirium patients having a mortality rate
2.9 times higher than non-delirium patients [3]. Long-term
cognitive decline is also a concern, as the onset of delirium
has been reported to be a cause of dementia [4]. Additionally,
delirium poses significant psychological distress to patients as
well as to their caregivers [5]. Due to the numerous problems
caused by delirium, the importance of preventive medicine is
emphasized. Predicting the onset of delirium in advance can
lead to efficient prevention.

Most predictions of delirium use electronic health records
and clinical evaluations by physician’s subjectivity [6]. One
such model achieved a sensitivity of 72.9% and a specificity
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of 77.5% using 115 preoperative features [7]. However, clinical
evaluations can sometimes differ between trainee doctors and
other medical professionals. Hence, highlighting the need for
predictions based on objective indicators. Biological markers
provide objective measures, and recent studies have success-
fully predicted delirium with 86% accuracy using preopera-
tive electroencephalogram (EEG) [8]. Additionally, changes in
preoperative heart rate variability (HRV) are likely associated
with delirium onset [9]. Therefore, this study aims to develop
a model for predicting the onset of delirium using these
biological indicators.

II. METHODS

This study has been approved by the research ethics com-
mittee of Tokyo Medical and Dental University.

In the following text, we defined the period from 9 AM until
1 PM as the AM and the period from 4 PM until bedtime as
the PM.

A. Participants

A total of 80 patients aged 16 and older who underwent oral
surgery at the Department of Oral and Maxillofacial Surgery,
Tokyo Medical and Dental University Hospital, March 23,
2022, and March 25, 2024, were participated in this study.
Electrocardiogram (ECG) and EEG were measured twice a
day, once in the AM and once in the PM, each for more than
3 minutes, from the day of admission until the day before
surgery. We excluded 11 subjects in the AM and 12 subjects
in the PM who did not have a Holter ECG attached during
EEG measurement. Then, we excluded 7 subjects in the AM
and 9 subjects in the PM whose ECG waveforms at the target
time were not recorded for some reason. Additionally, Data
from 3 subjects in the AM and 3 subjects in the PM, whose
ECG waveforms could not be confirmed due to noise, were
excluded. As a result, data from 59 subjects in the AM and
56 subjects in the PM were included in the analysis. Tables I
and II show the demographic data of the subjects for the AM
and PM, respectively.



TABLE I
DEMOGRAPHIC DATA OF STUDY SUBJECTS

(FROM 9 AM UNTIL 1 PM)

Item Delirium Positive Delirium Negative
Number of subjects 8 51

Gender (male/female) 5/3 30/21
Age(years±SD) 64.8±12.7 79.3±10.6

TABLE II
DEMOGRAPHIC DATA OF STUDY SUBJECTS

(FROM 4 PM UNTIL BEDTIME)

Item Delirium Positive Delirium Negative
Number of subjects 8 48

Gender (male/female) 6/2 27/21
Age(years±SD) 79.8±10.1 63.3±12.9

B. Data Collection

During the measurements, participants were asked to lie
down on a bed and close their eyes. ECG was measured at 250
Hz using a Holter monitor Simplo (Technology Inc.). EEG was
measured at 128 Hz using a single-channel electroencephalo-
graph ZA-X (Proassist Ltd.). The evaluation of delirium was
conducted by physicians over several days postoperatively.

C. EEG Data Preprocessing

We analyzed 3-minute EEG segments with minimal noise
that had been preselected by a physician. For each patient,
there is one segment in the AM and one segment in the PM.
Each segment was divided into 90 non-overlapping epochs,
each lasting 2 seconds.

For each epoch, we calculated the kurtosis, skewness, and
the difference between the maximum and minimum voltages.
For each patient’s 3-minutes data segment, we applied the
three sigma method to these three metrics to exclude epochs
considered to contain noise. Subsequently, for each remaining
epoch, we calculated the power ratio for the Theta (4–8 Hz),
Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma1 (30–59 Hz)
frequency bands, as well as the ratios between these variables,
and then computed the average of them over the 3-minutes
period.

D. ECG Data Preprocessing

In this study, we analyzed 3-minute segments of ECG taken
at the same time as the clipped EEG. We preprocessed the

TABLE III
HRV TIME DOMAIN INDICATORS

Feature Name Definition
meanNN mean RRI
meanHR mean heart rate
SDNN standard deviation of RRI

RMSSD root mean square of successive RRI differences
SDSD standard deviation of successive RRI differences
NN50 number of RRI pairs differing by over 50 ms
NN20 number of RRI pairs differing by over 20 ms

pNN50 percentage of RRI pairs differing by over 50 ms
pNN20 percentage of RRI pairs differing by over 20 ms

TABLE IV
HRV FREQUENCY DOMAIN INDICATORS

Feature Name Definition
HF Power in the 0.15–0.4 Hz range
LF Power in the 0.04–0.15 Hz range

LF/HF ratio of LF to HF

TABLE V
HRV POINCARE PLOT INDICATORS

Feature Name Definition
SD1 standard deviation of points vertical to identity line
SD2 standard deviation of points horizontal to identity line

SD1*SD2 product of SD1 and SD2
SD2/SD1 ratio of SD2 to SD1

selected data by applying a bandpass filter of 0.5–150 Hz. R-
waves were detected by the maximal overlap discrete wavelet
transform and RR intervals (RRIs) were calculated from them.
During this process, visual inspection was conducted. It is
known that accurate HRV indicators cannot be calculated from
RRIs containing outliers such as arrhythmias [10]. Hence,
we employed the Hampel filter to detect these outliers and
replaced them with linearly interpolated values. Subsequently,
we calculated the time-domain indicators shown in Table III,
the frequency-domain indicators shown in Table IV, and the
Poincare plot indicators shown in Table V.

III. MODEL

To distinguish between delirium and non-delirium, we con-
structed a binary classification model. We designed three types
of input variable patterns: EEG indicators, HRV indicators, and
both. Considering the circadian rhythm, separate models were
built for AM and PM. We used 59 patients (including 8 with
delirium) in the AM and 56 patients (including 8 with delirium)
in the PM to construct predictive models.

The methods used were support vector machines (SVMs)
with a radial basis function (RBF) kernel and random forests
(RFs). For hyperparameters, we used the L2 regularization
term and RBF kernel parameters for SVMs, and the maximum
number of decision branches, the minimum number of samples
per leaf node, and the number of input variables randomly se-
lected for each split for RFs. To test classification performance,
we employed leave-one-patient-out cross-validation.

After standardizing the training data by setting the mean of
each input variable to 0 and the variance to 1, we increased
the number of samples for delirium patients to match the num-
ber of non-delirium samples using an oversampling method,
SMOTE [11]. Oversampling is used to adress significant
imbalances between the numbers of samples of minority and
majority classes. We performed 10-fold cross-validation on
the training data and used Bayesian optimization to determine
the hyperparameters that maximize area under the precision-
recall curve (PR-AUC). We then made predictions on the
remaining one sample and validated the performance. Finally,
we calculated SHAP values [12] for each model to determine
the importance of the variables.



Fig. 1. Shap Value on SVM Model (from 9 AM until 1 PM)

IV. RESULTS

Tables VI and VII show the results in the AM and the
PM, respectively, indicating the average accuracy, sensitivity,
specificity, and PR-AUC on the training data. Tables VIII and
IX summarize the prediction results for the test data in the AM
and PM, respectively. Changing the input variable pattern did
not lead to significant changes in performance.

Figs. 1 and 2 plot the SHAP values for all test data predicted
by the SVM model with the highest sensitivity, using both
EEG and HRV indicators in the AM and PM, respectively.
The SHAP values are sorted in descending order of their
mean absolute values. The horizontal axis represents the SHAP
values, where larger values indicate a positive contribution
to the model and smaller values indicate a negative contri-
bution. The relative magnitude of SHAP values for different
variables indicates their comparative importance in influencing
the model’s output. The redder plot shows the value of the
respective feature is higher. The bluer plot shows the value of
the respective feature is lower.

V. DISCUSSION

Since sensitivity is important for predicting delirium, we
focus on sensitivity in the test data. We conclude that the
SVM model using both EEG and HRV indicators or only
EEG indicators for AM, and the Random Forest model using
only HRV indicators for PM, performed best in our data set.

Fig. 2. Shap Value on SVM Model (from 4 PM until bedtime)

However, compared to the previous study, which reported an
accuracy of 86% [8], the accuracy in our study is lower. This
discrepancy may be attributed to the fact that 30% of the
patients in the previous study were delirium patients, while
only 12.5% of the patients in our study were delirium patients,
resulting in greater class imbalance. Additionally, while the
previous study used three EEG channels, our study only used
one EEG channel, potentially failing to capture the EEG
changes associated with the onset of delirium.

Next, We discuss the top-ranked variables in importance.
First, we will discuss the EEG indicators. The low power
of alpha waves contributes to delirium, which is consistent
with the study showing that preoperative EEG alpha waves
are inversely correlated with the severity of postoperative
delirium [13]. The increase in theta wave power contributes to
the onset of delirium, consistent with research indicating that
delirium patients experience delayed brain waves and increased
theta waves [14], suggesting that delayed brain waves may
occur preoperatively. The increase in gamma wave activity
indicates a heightened state of arousal [15], implying that
preoperative arousal levels may be lower in delirium patients
compared to non-delirium patients.

Finally, we will discuss the indicators related to HRV. The
decrease in SD2 suggesting the onset of delirium is consistent
with the study indicating that SD2 decreases under stress
conditions [16]. It is noted that higher SDNN indicates greater



TABLE VI
TRAIN AVERAGE RESULTS (FROM 9 AM UNTIL 1 PM)

Method Input Variable Accuracy Sensitivity Specificity PR-AUC

SVM
HRV 0.84 0.83 0.86 0.92
EEG 0.82 0.92 0.72 0.94

HRV and EEG 0.81 0.90 0.71 0.90

RF
HRV 0.85 0.80 0.90 0.96
EEG 0.89 0.86 0.89 0.96

HRV and EEG 0.84 0.84 0.85 0.93

TABLE VII
TRAIN AVERAGE RESULTS (FROM 4 PM UNTIL BEDTIME)

Method Input Variable Accuracy Sensitivity Specificity PR-AUC

SVM
HRV 0.88 0.91 0.85 0.96
EEG 0.85 0.86 0.84 0.88

HRV and EEG 0.86 0.99 0.73 0.96

RF
HRV 0.86 0.80 0.90 0.96
EEG 0.83 0.92 0.74 0.93

HRV and EEG 0.89 0.92 0.86 0.98

TABLE VIII
TEST RESULTS (FROM 9 AM UNTIL 1 PM).

FRACTIONS IN PARENTHESES INDICATE HOW MANY PATIENTS ANSWERED CORRECTLY

Method Input Variable Accuracy Sensitivity Specificity PR-AUC

SVM
HRV 0.81 0.50 (4/8) 0.86 (44/51) 0.20
EEG 0.66 0.63(5/8) 0.67(34/51) 0.16

HRV and EEG 0.68 0.63(5/8) 0.69(35/51) 0.20

RF
HRV 0.73 0.38(3/8) 0.78(40/51) 0.18
EEG 0.73 0.50(4/8) 0.76(39/51) 0.21

HRV and EEG 0.68 0.38(3/8) 0.69(36/51) 0.12

TABLE IX
TEST RESULTS (FROM 4 PM UNTIL BEDTIME).

FRACTIONS IN PARENTHESES INDICATE HOW MANY PATIENTS ANSWERED CORRECTLY

Method Input Variable Accuracy Sensitivity Specificity PR-AUC

SVM
HRV 0.75 0.38(3/8) 0.81(39/48) 0.14
EEG 0.75 0.38(3/8) 0.81(39/48) 0.23

HRV and EEG 0.64 0.63(5/8) 0.65(31/48) 0.18

RF
HRV 0.68 0.63(5/8) 0.69(33/48) 0.24
EEG 0.61 0.38(3/8) 0.65(31/48) 0.25

HRV and EEG 0.64 0.50(4/8) 0.69(33/48) 0.18

resistance to stress [17], and lower SDNN is associated with a
state of stress, aligning with the prediction that a decrease in
SDNN contributes to the onset of delirium. Additionally, when
SDNN decreases, the variability of NN intervals diminishes,
leading to reductions in NN20 and pNN20. Therefore, the
decrease in NN20 and pNN20 due to stress load is consistent
with their contribution to the onset of delirium. A higher
LF/HF ratio contributes to delirium, indicating a state of mental
stress [18], consistent with studies suggesting that stress is
partly responsible for the onset of delirium.

VI. CONCLUSIONS

In this study, our model was able to predict with a sensitivity
of 0.63, a specificity of 0.69, and an accuracy of 0.68.
However, due to the limited number of our data set, we need to
conduct further studies. Although our models did not achieve
the accuracy reported in other studies, the result allowed us to
investigate the relationship between physiological markers and
the delirium. In the future work, we plan to collect additional

subject data and compare the results with those obtained using
various machine learning techniques.
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plot indices as measures of sympathetic cardiac regula-
tion: Responses to psychological stress and associations
with pre-ejection period,” International Journal of Psy-
chophysiology, vol. 133, pp. 79–90, Nov. 2018. DOI:
10.1016/j.ijpsycho.2018.08.005. eprint: 2018Aug11.

[17] H. G. Kim, E. J. Cheon, D. S. Bai, Y. H. Lee, and B. H.
Koo, “Stress and heart rate variability: A meta-analysis
and review of the literature,” Psychiatry Investigation,
vol. 15, pp. 235–245, Mar. 2018. DOI: 10 . 30773 / pi .
2017.08.17. eprint: 2018Feb28.

[18] W. von Rosenberg, T. Chanwimalueang, T. Adjei, U.
Jaffer, V. Goverdovsky, and D. P. Mandic, “Resolving
ambiguities in the lf/hf ratio: Lf-hf scatter plots for the
categorization of mental and physical stress from hrv,”
Frontiers in Physiology, vol. 8, p. 360, Jun. 2017. DOI:
10.3389/fphys.2017.00360.




