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Abstract—In recent years, interest in sign language recognition
has continuously increased. However, recognition methods for
exploiting the combination of RGB and depth data are limited,
especially applied to Vietnamese sign language. This paper
presents an isolated Vietnamese sign language recognition method
using a novel streams-enhanced 3D ConvNet. The experimental
results demonstrate the superiority of the proposed method over
other methods using variations from RGB, depth, and RGB-D
data. The speed and accuracy of our method are better than
those of previous methods.

Index Terms—Keywords: sign language recognition

I. INTRODUCTION

As we know, deaf and hard-of-hearing people use sign lan-
guage to communicate. They use their upper body to express
speech, including hand gestures, facial expressions, and body
language. The need for research into sign language recognition
stems from its potential to empower the deaf and hard-of-
hearing community, facilitating seamless communication with
technological interfaces. The development of accurate and
efficient algorithms in this field promises to bridge the com-
munication gap, promote communication accessibility for the
deaf, and promote inclusivity in technological development.

Sign language recognition presents challenges within com-
puter vision. Existing studies have explored various modalities
for feature representation, such as RGB frames [1], [2], [3],
optical flows [4], audio waves [5], and human skeletons [6],
[7]. Among these modalities, skeleton-based action recognition
has received increasing attention in recent years due to its
action-focusing nature and compactness.

In practice, human skeletons in a video are mainly rep-
resented as a sequence of joint coordinate lists, where pose
estimators extract the coordinates. Since only the pose infor-
mation is included, skeleton sequences capture only action
information while being immune to contextual noises, such
as background variation and lighting changes. Among all the
methods for skeleton-based action recognition [8], [9], [10],
graph convolutional networks (GCN) [7] have been one of the

Fig. 1. Pose estimators produce 2D poses that are represented by stacks of
heatmaps of skeleton joints.

most popular approaches. However, these methods are limited
in aspects such as: A small perturbation in the coordinates
often leads to completely different predictions [11]; difficult to
combine with varying modality datasets such as RGB, depth,
RGB, optical flows, and skeletons.

In this paper, we propose a novel framework, Ad2C (Advan-
tage 2 Convolution), which can solve the difficulties mentioned
above. Specifically, Figure 1’s present pose estimators produce
2D poses that Ad2C accepts as input. Rather than operating
on coordinates on a human skeleton graph, 2D poses are
represented by stacks of heatmaps of skeleton joints. A 3D
heatmap volume will be created by stacking the heatmaps at
various timesteps along the temporal dimension. To identify
actions, Ad2C based on I3D architecture and advandge it, uses
two flow 3D-CNN for the 3D heatmap volume and depth data.



Table 1 summarizes the key distinctions between Ad2C and
the most popular skeleton-based recognition method.

TABLE 1
SUMMARIZES THE KEY DISTINCTIONS BETWEEN AD2C AND GCN-BASED

TECHNIQUES.

skeleton-based recognition Ad2C
Input Skeleton Varied

Format Coordinates Heatmap Volumes
Depth Volumes

Architecture GCN 3D-CNN

The weaknesses of some of the methods can be solved with
Ad2C. Initially, applying 3D heatmap volumes is kinder to the
original posture estimate; our experience indicates that Ad2C
performs brilliantly across input acquired by various methods.
Furthermore, Ad2C benefits from the latest developments in
3D convolutional neural networks and is simpler to combine
other modalities in multi-stream convolutional networks. This
feature creates a lot of chances for improvement in terms
of recognition performance through advantages architecture.
We carry out extensive experiences over a number of our
datasets, including RGB, Depth, RGB-D, and heatmap-depth,
to confirm the efficacy and efficiency of Ad2C.

The main contributions of our study are folders.
• We propose a new model, called Ad2C, which combines

the generated Heatmap-Depth data and gives good per-
formance.

• We experimentally the performance of fusion methods
in our dataset, including the evaluation of RGB, Depth,
RGB-D, and Heatmap- Depth discrete data.

The remainder of this article is organized as follows. Part
II discusses our related work. Section III presents details
of our proposed method. Part IV describes the experiment
result. Finally, there are conclusions and future development
directions in Part V.

II. RELATED WORK

I3D. [41] The video classification model, Two-Stream 3D
ConvNets, is a published basic method. This method combines
two I3D networks, one trained on RGB inputs and another on
optical flow inputs. The two streams capture complementary
information about the appearance and motion of the video
frames. The I3D networks are based on inflating the filters and
pooling kernels of the Inception v1 model into 3D, allowing
them to leverage the ImageNet pre-trained weights and archi-
tectures. The two-stream I3D model achieves state-of-the-art
performance on several action recognition benchmarks, such
as UCF-101 and HMDB-51, after pre-training on the Kinetics
dataset [1]. I3D was initially applied to Kinetics data about
activities. However, I3D was later applied to other datasets on
sign language recognition [38], [39], [40]

S3D. [42] S3D (Separable 3D Convolutional Neural Net-
works) is a variant of I3D that aims to improve computational
efficiency while maintaining high performance in video under-
standing tasks. S3D is designed to reduce the computational
cost of 3D convolutions by decomposing them into separate

spatial and temporal convolutions. This reduces the number
of parameters and increases efficiency without significantly
sacrificing performance. By leveraging separable convolutions,
S3D models can process videos faster and with less computa-
tional resources compared to traditional 3D ConvNets.

Applications in Sign Language Recognition: S3D’s effi-
ciency makes it suitable for applications where real-time
processing is crucial. Its ability to handle spatio-temporal
data effectively helps in capturing the dynamic nature of sign
language gestures. S3D has been used in various research
works involving large-scale sign language datasets, helping
to achieve high accuracy in recognizing complex gestures and
movements.

3D-CNN for RGB-based action recognition. In applied
to learning spatial features to be included in videos, 3D-CNN
is a natural expansion of 2D-CNN. Action recognition has
continuously made use of it [12] [2]. Due to its numerous
parameters, 3D-CNN requires an enormous number of videos
to learn suitable representation. After I3D [1], 3D-CNN has
emerged as the mainstream method for action recognition.
Subsequently, the action recognition community presented
various advanced 3D-CNN architectures [13], [14], [15], [16],
which exceed I3D with regard to accuracy and efficiency.

GCN for skeleton-based action recognition. In skeleton-
based action recognition, graph convolutional networks are
frequently used [17], [18], [19], [20], [21], [7]. It represents
sequences of the human skeleton as spatiotemporal graphs.
A popular baseline for GCN-based techniques is ST-GCN
[7], which combines interleaving temporal convolutions with
spatial graph convolutions for spatiotemporal modeling. While
self-attention mechanisms enhance the modeling capacity [24],
[25], adjacency powering is used for multiscale modeling
upon the baseline [23], [22]. Although GCN has achieved
considerable success in skeleton-based action recognition, its
scalability and reliability are restricted [11]. Furthermore,
careful design may be required for GCN-based systems that
fuse features from skeletons and other modalities [26].

CNN for skeleton-based action recognition. Convolutional
neural networks are used in another line of research for
skeleton-based action recognition. 2D-CNN-based methods
start by modeling skeleton sequences using manually produced
modifications to create a pseudo-image. Heatmaps are aggre-
gated along the time dimension in one line of work [27],
into a 2D input with color encodings, or learned modules
[28], [29]. Despite meticulous design, information loss still
happens during aggregation, resulting in subpar recognition
performance. By using transformations, the coordinates in a
skeleton sequence can be immediately converted to a pseudo
image in other works [30], [31], [32], [33], [34]. This usually
results in a 2D input with the shape K ×T, where K represents
the number of joints and T is its temporal length.

These approaches are not as competitive as GCN on widely
used benchmarks because such input cannot make use of
the locality nature of convolution networks [30]. 3D-CNNs
have only been used in a small number of earlier studies for
skeleton-based action recognition. They either directly sum up



Fig. 2. Ad2C framework

Fig. 3. The process of creating heat maps from RGB images.

the 3D skeletons into cuboids [37] or stack the pseudo images
of distance matrices [36], [35] to create the 3D input. These
methods likewise experience significant information loss and
achieve performance that is much below the state-of-the-art.

III. PROPOSED METHOD

A. Ad2C architecture

We propose Ad2C structural designs, an overview of the
Ad2C architecture is depicted in (Figure 2). Ad2C is the
approach of a 3D-CNN for action recognition, which involves
improving and combining two CNN networks based on the
I3D structure. We further improved the model by splitting the
Heat Map and Depth data into two separate training streams.
Each stream is passed through Conv3D layers to extract fea-
tures before combining. The combination of information can
then be fed into another Conv3D layer for further processing
to enhance the feature combination from the previous layer or
no processing may be required. Additionally, we also train a
3D-CNN enhancement that applies a combination of Heatmap
and Depth data without going through two streams. However,
this test gives results that are not as feasible as the previous
method. The variant method combines two CNN networks
with Heatmap and Depth input layers to demonstrate the
flexible interaction capabilities of Ad2C.

B. Training Objective

We start by looking at skeleton extraction, which is the basis
of skeleton-based action recognition. We point out some

aspects that need to be considered such as choosing a
skeleton extraction tool and promoting using 2D skeletons.
Therefore, we introduce the Heatmap Volume (Figure 3),
representing the 2D skeleton sequences used in the training
model. In terms of storing estimated heatmaps, they are
typically saved as a set of three coordinates (x;y;c), where
c marks the maximum point of the heatmap and (x;y) is the

Fig. 4. Overlay joint or limb heatmaps along the time dimension and apply
preprocessing that creates the heatmap volume.

coordinate corresponding to c. In our experiment, we found
that the triple coordinates (x; y; c) save a large amount of
storage space without sacrificing performance.

The training objective is a multi-task optimization problem.
Let si be the maximum IoU score between the i-th default
span and any ground truth span, and let xk

ij = {1, 0} be
an indicator for matching the i-th default span to the j-th
ground truth span of category k ∈ [1,K]. The total objective
loss function consists of three weighted components: the
localization loss (loc), the class confidence loss (conf), and
the activity confidence loss (act):

Loss = Lloc(x, t, g) + αLconf (x, c) + βLact(s, c) (1)

where α and β are the weight terms used to balance each
component of the loss function, the localization loss is a
Smooth L1 loss between the predicted temporal offsets (t)
and the ground truth span parameters (g). The class confidence
loss (c) is a softmax loss over multiple class confidences. The
activity confidence loss is a binary classification loss using
sigmoid cross-entropy.

C. Proposed setting

• Data splitting and preprocessing
Data splitting: We present an analysis of a dataset from

our collection, reflecting real-world scenarios. This dataset
includes 120 isolation signs, each performed by 20 volunteers,
each volunteer performing 10 times per sign. For the Ad2C
model, we split the dataset into three sets: training, validation,
and testing, based on the 20 signers for a sign. This process
ends with a total of 16x120 signers for training, 2x120 signers



for validation, and 2x120 signers for testing; this corresponds
to 80% for training, 10% for validation, and 10% for testing.
The number of videos per set is as follows: the training set
has 18948 videos, the validation set has 2369 videos, and the
testing set has 2369 videos. The dataset is divided in this
manner for both RGB and depth data.

Preprocessing:
Heatmap inputs: Use RGB data to convert into Heatmaps

through skeleton extraction. In this way, we have eliminated
environmental factors such as lighting, background, or blind
spots in the image.

First, We resize the frame to 250 x 250 pixels and apply a
center crop to 224 x 224 pixels. We resize the frame to 250
x 250 pixels and apply a center crop to 224 x 224 pixels.
For data augmentation, we apply random rotations between
-15 degrees and 15 degrees and adjust brightness by up to
10%. Additionally, the data undergoes horizontal and vertical
translation. This augmentation is suitable because, in real-
world scenarios, people may stand off center, and the camera
setup may experience rotations within this range.

Then extracting the skeleton, we use the Holistic Pose
method of media pipe. The two extraction stages are shown
in Figure 4:

• Stage 1: preliminary extraction of the body and face
skeleton.

• Stage 2: focus on each area of the hands.
Because the size of the body and face is large, we can detect

it directly from large images. On the contrary, the fingers
in the hand are much smaller but the information about the
movements is very huge. Therefore, we will approximately
cut the hand based on the previously detected wrist points and
include them in the hand detection model for more accurate
extraction. There will be 52 points in total

• 32 face and body points
• 20 finger points
Heatmap is created from line segments with skeleton points

corresponding to accompanying colors. Heatmaps help the
model learn better and more naturally with spatial information
like RGB and the same skeleton- avoiding being influenced by
the environment’s same skeletons. Sign language recognition
is greatly influenced by the fingers and wrist. Therefore, we
use the colors of different wrist and finger segments, including
5 creating colors: green, white, dark blue, red, and light green.
To better represent the data about the relative position of the
hand and body parts, we used light purple for the body and
blue for the arms. The head is quite far from the body, so we
chose a color similar to the body color. The foot part carries
no information, so it can be omitted.

Depth inputs: To enable the integration of Depth data with
Heatmap data, resizing to 224 x 224 is necessary. Given that
Depth data values range up to 1300 (equivalent to 130 cm),
the process involves normalization and resizing. Initially, the
Depth data is normalized to the range of 0-1. Subsequently,
to fit within the 0-255 range typical for images, the values are
scaled by multiplying by 255. Following this normalization

step, standard resizing techniques are applied. Once the Depth
data has been resized to the desired dimensions, normalization
to the range of 0-1 is necessary. This method ensures that the
depth values retain meaningful depth information throughout
the process.

Time augmentation: In practical scenarios, sign language
practitioners do not consistently execute gestures at standard-
ized speeds. Thus, the input data necessitates speed variation
achieved through random frame removal or repetition, while
maintaining chronological order. This approach ensures the
dataset’s realism and enhances its robustness for model train-
ing. Furthermore, in practical scenarios, gestures are some-
times not fully executed to swiftly express language concepts.
To equip the model with the ability to detect signs even in such
instances, we initially segmented the video into seven parts,
randomly selecting start indices from the first three segments
and end indices from the last three. The rationale behind
this data augmentation strategy stems from the observation
that signers often abbreviate the beginning or end of gestures
to increase communication speed while ensuring that the
intended meaning remains comprehensible to the interlocutor.
Before temporal data augmentation, Heatmap and Depth data
are combined to ensure that each frame corresponds to its
respective pair.

IV. EXPERIMENTAL RESULTS

A. Experiment

As illustrated in the proposed settings, different colors are
assigned to various wrist and finger segments for clarity.
These include green, white, dark blue, red, and light blue.
To accurately depict the relative positions of hands and body
parts, light purple is used for the body and blue for the arms.
Given that the head is positioned relatively far from the body, a
color similar to the body color is chosen. The footer part does
not convey any significant information and can be disregarded.
The outcomes of these settings are shown in Figure 5.

Fig. 5. Heatmap line segments with multiple colors

To achieve effective model training, we employed the RTX
3090 24GB hardware platform, utilizing a batch size of 80 and
executing the process for 300 epochs. We also implemented
Weight Decay with a rate of 0.00005 and Dropout with a



value of 0.3 in the final Conv3D layer to mitigate overfitting.
Additionally, each training sample comprised 72 frames. Due
to the significantly larger parameter count, we initially disabled
the Heatmap branch to train the Depth branch with a learning
rate of 0.001 over 100 epochs. Subsequently, we enabled all
layers of the model and continued training with a reduced
learning rate below 0.0005.

When testing improvements in two streams of I3D for our
Ad2C model, we tested the use of an Early Fusion model
(which combines Heatmap and Depth data immediately after
the input layers). With this early merging, training only takes
place on one 3D-Conv stream. We used this model to pre-
train the Kinetics dataset and fine-tune all its layers. For both
Mid-Fusion (Ad2C architecture) and Late-Fusion (combines
two streams at the end), we also used the Kinetics dataset
to conduct training for both branches of 3D-Conv and fine-
tune its inner layers. For these experiments, we proposed
the improved model Ad2C as Mid-Fusion and started the
experiments with our Heatmap-Depth dataset.

Finally, we start testing Ad2C and compare the training
results of Ad2C on different input data types of our dataset.
We tested Ad2C with Heatmap-Depth and RGB-D inputs. The
results show that Heatmap-Depth input has better accuracy
than RGB-D on the Ad2C model. To further demonstrate the
superiority of Ad2C, we continue to compare the accuracy of
the Ad2C model with the original I3D on the same RGB-D
input data type. Because the original I3D only has 1 stream,
to be able to use RGB-D, we must use the early fusion
method (after the input layer). We also tested I3D with discrete
data types including RGB and Heatmap. We presented and
analyzed the test results in detail below.

B. Results

Table 2 presents the performance comparison of our dataset.
From the table, it is clear that the model performance varies
significantly depending on the input data type and the model
type.

TABLE 2
MODEL PERFORMANCE

Model Input Accuracy mAP Validation Loss
I3D RGB 59.35% 0.581 1.65

Heatmap 53.33% 0.548 1.85
RGB-D 64.21% 0.633 1.52

Ad2C RGB-D 79.80% 0.804 0.77
Heatmap- Depth 80.15% 0.825 0.74

When the I3D model is trained with discrete data (RGB
or Heatmap), accuracy is higher with RGB data (59.53%)
than with Heatmap (53.33%). This shows that using RGB can
higher model performance in terms of accuracy. Additionally,
mAP is also quite large in RGB (0.581) compared to Heatmap
(0.548), indicating better performance when used only on RGB
data. However, in these cases, Validation Loss is still large,
with RGB and Heatmap data being 1.65 and 1.85 respectively.

Interestingly, when the I3D model is trained with RGB-
D data, combining both RGB and Depth data, the accuracy is

higher (64.21%). This shows that combining different types of
data can improve model performance. mAP is approximately
equivalent (0.633) to that in discrete RGB (0.581), suggesting
a trade-off between precision and mAP. Validation loss is still
large, although it is slightly reduced compared to RGB or
Heatmap data but still at the threshold of 1.52

With the advanced model Ad2C, using a combination of
data types is necessary. Therefore, Ad2C only uses input layers
of RGB-D or variants such as Heatmap-Depth without using
separate data. Comparing Ad2C and I3D on the same RGB-D
input data set, it is easy to see that Ad2C’s accuracy is much
better (79.80%) than (64.21%). Ad2C continues to improve
when using the Heatmap-Depth input layer, and this model’s
accuracy continues to increase from (79.80%) to (80.15%).
More specifically, in the case of using the Ad2C model, the
Validation Loss of the model has decreased significantly. When
Ad2C trains on the RGB-D dataset, the Loss is at 0.77 and this
number continues to decrease to 0.74 when using Heatmap-
Depth as the input layers

Table 3 compares different data-trained Ad2C networks
regarding the number of parameters, input frame sizes, and
inference time on a machine with GPU RTX 3090 24GB. From
the table, we can observe that the inference time on the Ad2C
network increases significantly with 72 input frames sized 224
x 224.

TABLE 3
NUMBER OF PARAMETERS, INPUT SIZES OF THE MODELS, AND

INFERENCE TIME.

Network Input
data

Number of
parameters

GPU
inference

time
I3D RGB 12.06M 12.36(ms)
I3D RGB-D 24.77M 51.39(ms)

Ad2C Heatmap-Depth 25.09M 51.11(ms)

The results presented in Table 3 show that input data type
and model structure can significantly impact the performance
of networks on the same datasets we collected. However, there
seems to be a trade-off between accuracy and mAP on RGBD
and Heatmap-Depth data that results in improved performance.
Further research is needed to explore these relationships in
more detail and optimize model performance under different
conditions.

V. CONCLUSION AND FUTURE WORK

In our research, we improve current modern recognition
methods to produce better performance and quality than previ-
ously published methods based on the heatmap-depth dataset.
The recognition method is suitable for device conditions, does
not consume resources, and runs well on GPU and in real-time.
Our experimental implementation yields good, scalable results
on larger datasets. The effectiveness of the dataset and training
method has been confirmed by multiple experiments.

Our next research work in the future is to continue im-
proving training methods to achieve higher performance. This
requires meticulous methodological research to deliver our
model suite of the highest quality.
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