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Abstract—Recently proposed semi-blind source separation
(SBSS) based acoustic echo cancellation (AEC) algorithms have
attracted significant research interest due to their ability to
track dynamic acoustic environments in the presence of near-
end signals. Two source models are considered in these existing
algorithms, i.e., the spherical generalized super-Gaussian distri-
bution and the circular super-Gaussian distribution with a low-
rank spectrogram model. In this paper, we aim to further enhance
AEC performance by leveraging more flexible source models.
Several novel algorithms are subsequently proposed. Simulations
demonstrate the superiority of proposed algorithms in various
situations.

I. INTRODUCTION

Acoustic echo cancellation (AEC) plays an indispensable
role in real-time full-duplex communication [1]–[3]. The per-
formance of conventional adaptive filters based algorithms gen-
erally suffers dramatic degradation in double-talk situations,
i.e., when far-end signal and near-end signal coexist [1], [4],
[5]. To address this problem, researchers reformulated AEC as
a semi-blind source separation (SBSS) problem [6], [7] and
subsequently derived several SBSS-AEC algorithms [8]–[12].

Existing SBSS-AEC algorithms can be roughly divided into
two categories based on the source model assumption: the
auxiliary function-based independent vector analysis (AuxIVA)
[13] which considers spherical super-Gaussian distribution
[11], [12], and the Itakura-Saito divergence-based independent
low-rank matrix analysis (IS-ILRMA) [14], [15], which con-
siders circular super-Gaussian distribution and non-negative
matrix factorization (NMF) spectrogram model [10].

Although these algorithms have achieved satisfying AEC
performance, there is still room for further improvement by
considering more generalized and flexible source models.
In this paper, we adopt two heavy-tailed distributions: the
complex generalized super-Gaussian distribution (GGD) and
Student’s t-distribution. Subsequently, we derive three novel
algorithms, namely, GGD-ILRMA, t-AuxIVA and t-ILRMA
based SBSS-AEC. To update NMF parameters in a real-
time manner, we apply recursive approximation and semi-
supervised NMF (SSNMF) techniques [16], [17]. The perfor-
mance of the proposed algorithms is studied under complex
real-time circumstances. Several simulations validate the effi-
cacy and superiority of the proposed algorithms.

The remainder of this paper is organized as follows: In Sec-
tion II, a bilinear signal model and the problem formulation of
SBSS-AEC are introduced. Next, on the basis of conventional
GGD-AuxIVA and IS-ILRMA based SBSS-AEC [10]–[12]

described in Section III-A, we propose GGD-ILRMA-based
SBSS-AEC algorithm utilizing alternating iterative projection
(AIP) as update rules and recursive approximation for online
implementation in Section III-B. In Section III-C, all the
mentioned GGD-based SBSS-AEC algorithms are extended to
their heavy-tailed counterparts with Student’s t-distributions,
where t-AuxIVA and t-ILRMA based SBSS-AEC algorithms
are proposed. The feasibility of SSNMF is discussed in Section
III-D. Simulations and results considering two scenarios, i.e.,
speech and music, are shown and analyzed in Section IV.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Considering a full-duplex communication scenario, a loud-
speaker with unknown non-linearity is used to play the far-
end signal. The output of the loudspeaker is convolved with
acoustic impulse response (AIR) to generate the echo. The
superimposition of the near-end signal and the echo is captured
by the microphone and then transmitted back to the far end.
We use odd power series expansion technique to approximate
the non-linearity of the loudspeaker as described in [9], [18],
[19]. In double-talk situation, the observed microphone signal
in short-time Fourier transform (STFT) domain can be denoted
as [10]–[12]

Yi,j = Ei,j + Si,j

=

N∑
n=1

L∑
l=1

anHi,j,lXn,i,j−l+1 + Si,j ,
(1)

where i = 1, . . . , I and j = 1, . . . , J are frequency-bin and
time-frame indices, respectively, I and J are the number of
frequency bins and time frames, respectively, N is the expan-
sion order, an is the n-th order odd power series expansion
coefficient, L is the convolutive transfer function (CTF) filter
length, Hi,j,l is the CTF filter coefficient [10], [20], and
Xn,i,j , Ei,j and Si,j are the STFTs of nth-order far-end signal,
nonlinear echo and near-end signal, respectively.

The nonlinear echo can be reformulated as a bilinear
form [11]

Ei,j = hT
i,jXi,ja, (2)

where

hi,j = [Hi,j,1 Hi,j,2 · · · Hi,j,L]
T , (3)

a = [a1 a2 · · · aN ]T , (4)



Xi,j = [x̃i,j x̃i,j−1 · · · x̃i,j−L+1]
T , (5)

x̃i,j = [X1,i,j X2,i,j · · · XN,i,j ]
T , (6)

Xi,j ∈ CL×N is a matrix constructed by far-end signal series
Xn,i,j and (·)T denotes the transpose operation. Using (2),
the estimation of an and Hi,j,l can be interpreted as two
sub-separate SBSS problems. After defining a new far-end
reference vector

xi,j = Xi,ja, (7)

(2) is rewritten as

Ei,j = hT
i,jxi,j . (8)

Then, the mixing process in (1) can be rewritten with a vector
form

ỹi,j = Hi,j s̃i,j , (9)

with

ỹi,j =
[
Yi,j xT

i,j

]T
, (10)

s̃i,j =
[
Si,j xT

i,j

]T
, (11)

Hi,j =

[
1 hT

i,j

0L×1 IL

]
, (12)

where Hi,j ∈ C(L+1)×(L+1) is the mixing matrix, 0L×1 is
a column vector of length L with all elements equal to 0,
IL is an identity matrix of size L × L. Assuming that Hi,j

is non-singular, to extract the near-end signal, the demixing
matrix Ŵi,j ∈ C(L+1)×(L+1) is obtained as the inverse of
Hi,j , which is

Ŵi,j =

[
1 −ĥT

i,j

0L×1 IL

]
, (13)

where ĥT
i,j is a column vector with L parameters to be

estimated. With this structure, the near-end signal is extracted
as

Ŝi,j = ŵH
i,jỹi,j , (14)

where the extraction filter ŵi,j = [1 − ĥT
i,j ]

H is the first row
of (13) and (·)H denotes the Hermitan transpose. Therefore,
the target of SBSS-AEC in double-talk situation is transformed
into estimating ŵi,j to extract the near-end signal. Note that (2)
can also be written as Ei,j = aTx⋆

i,j , where x⋆
i,j = XT

i,jhi,j .
Similar derivation as (9)–(14) is omitted for simplification [11].

III. GENERALIZATION OF ONLINE SBSS-AEC
ALGORITHMS

A. Conventional method

In SBSS-AEC, the near-end source can be extracted by
exploiting mutual independence between near-end and refer-
ence signals. Therefore, since the determinant of (13) equals
one, the following recursive negative log-likelihood function
is derived [12], [16]

Lj =−
1∑j

j′=1(η)
j−j′

j∑
j′=1

(η)j−j′ log p (sj′) , (15)

where η ∈ (0, 1) is a forgetting factor and

sj = [S1,j S2,j . . . SI,j ]
T
. (16)

In GGD-AuxIVA-based SBSS-AEC, the near-end signal is
modeled with a spherical complex GGD [10]–[12], [21]

pGGD(sj) ∝ exp

[
−
(
∥sj∥2
γ

)β
]
, (17)

where ∥·∥2 stands for ℓ2 norm, γ and β stand for positive scale
and shape parameters, respectively. We assume that 0 < β ≤ 2
to satisfy the precondition of majorization-minimization (MM)
method [21], [22].

Here, an and Hi,j,l are updated alternatingly. When we fix
an, the following cost function for CTF coefficients ĥi,j can
be obtained using MM method

Lh,+
j =

I∑
i=1

ŵH
i,jVi,jŵi,j . (18)

To further reduce computational cost, we employ AIP update
rules [11], where the auxiliary matrix Vi,j ∈ C(L+1)×(L+1) is
partitioned as

Vi,j =

[
σ2
y,i,j gH

i,j

gi,j Ci,j

]
, (19)

gi,j and Ci,j are recursively updated based on (18)

σ2
y,i,j = ησ2

y,i,j−1 + (1− η)φGGD(σs,j) |Yi,j |2 , (20)

gi,j = ηgi,j−1 + (1− η)φGGD(σs,j)Y
∗
i,jxi,j , (21)

Ci,j = ηCi,j−1 + (1− η)φGGD(σs,j)xi,jx
H
i,j , (22)

where (·)∗ denotes conjucate operation, φGGD(σs,j) is the
score function

φGGD(σs,j) = σβ−2
s,j , (23)

and σs,j = ∥ŝj∥2 is the auxiliary variable. Next, the CTF filter
is updated as [11]

ĥi,j =
(
C−1

i,j gi,j

)∗
. (24)

When we fix Hi,j,l, the update of expansion coefficient â can
be derived similarly as (18)–(24) [11]. After updating all the
parameters, the near-end signal can be extracted using (14).

While GGD-AuxIVA-based SBSS-AEC is effective in most
scenarios, as shown in (17), the multivariate source model of
AuxIVA is inflexible and cannot cope with specific harmonic
structures of each source due to higher-order correlations
between frequency bins [23]. As another state-of-the-art BSS
algorithm, ILRMA is more generalized and effective in mod-
eling sources by using the low-rank time-frequency NMF
structure, especially in music scenarios [14]. Nevertheless,
the ILRMA-based SBSS-AEC method in [10] assumes IS-
NMF as the generative model, the probabilistic distribution
of which is deficient compared with GGD-NMF. Therefore, in
this paper, we first improve the performance of GGD-AuxIVA-
based and IS-ILRMA-based SBSS-AEC by using GGD-NMF
as the source generative model and propose a new GGD-



ILRMA based SBSS-AEC algorithm.

B. Proposed GGD-ILRMA based SBSS-AEC

In GGD-ILRMA-based SBSS-AEC, the source generative
model follows a time-frequency-wise isotropic complex GGD

pGGD(Si,j) =
β

2πr2i,jΓ(
2
β )

exp

[
−
(
|Si,j |
ri,j

)β
]
, (25)

rpi,j =

K∑
k=1

ti,kvk,j , (26)

where ti,k ≥ 0 and vk,j ≥ 0 are the nonnegative basis and
activation elements of the basis matrix Tn ∈ RI×K

≥0 and the
activation matrix Vn ∈ RK×J

≥0 , repectively, k = 1, . . . ,K is the
integral index of the basis, K is the number of NMF bases,
ri,j is a time-frequency-varying variance corresponding to the
low-rank source model, p > 0 is the parameter that defines
NMF domain and Γ(·) is the Gamma function [24]. Using
MM method, the score function is derived as

φGGD(ri,j) =
β

2

∣∣∣Ŝi,j

∣∣∣β−2

r−β
i,j . (27)

In ILRMA, the update rules for ŵi,j are equivalent to
those in AIP-based AuxIVA [11], [14]. Regarding the source
model, we adopt the update rules in literature [24] and adapt
the update of basis elements from offline to online scenarios
using recursive approximation [10], [16]. Information from the
previous frames is utilized to update the scaling factor of the
basis elements in the current frame:

tGGD
i,k ← tGGD

i,k

β
∑j

j′=1
αj−j

′

GGD

∣∣∣Ŝi,j′

∣∣∣β r−(p+β)

i,j′
vGGD
k,j′

2
∑j

j′=1
αj−j′

GGDr
−p

i,j′
vGGD
k,j′


p

p+β

,

(28)

vGGD
k,j ← vGGD

k,j

β
∑I

i=1

∣∣∣Ŝi,j

∣∣∣β r−(p+β)
i,j tGGD

i,k

2
∑I

i=1 r
−p
i,j t

GGD
i,k


p

p+β

, (29)

where αGGD ∈ (0, 1) is a forgetting factor for NMF variables.
With an appropriate setup of αGGD, the convergence speed of
the NMF model can be increased during the early stages.

C. Proposed Student’s t-distribution-based SBSS-AEC

Student’s t-distribution is also a popular heavy-tailed distri-
bution model, which is effective in modeling audio sources
due to its heavier tail and controllable degrees of freedom
parameter [25]–[27]. In this paper, we extend GGD-AuxIVA-
based and GGD-ILRMA-based SBSS-AEC using Student’s
t-distributions, and propose t-AuxIVA-based and t-ILRMA-
based SBSS-AEC.

For t-AuxIVA-based SBSS-AEC, we assume a spherical
complex Student’s t-distribution with zero-mean as p.d.f. of
the near-end signal [25], [26]:

pt(sj) ∝

(
1 +

2

v

∥sj∥22
γj

)− I+v
2

, (30)

where v > 0 is the degrees of freedom parameter and γj is the
uniform variance over frequency bins in the j-th time frame.
Using (15) and (30), the following score function is derived:

φt(σs,j) =

(
1 +

I

v

)(
γj
2

+
σ2
s,j

v

)−1

. (31)

Since the cost function is identical to (18) when we fix an,
ŵi,j can be updated with the AIP algorithm (19)–(22).

As to t-ILRMA-based SBSS-AEC, the isotropic complex
Student’s t-distribution is assumed as the following source
generative model:

pt(Si,j) =
1

πr2i,j

(
1 +

2

v

|Si,j |2

r2i,j

)− 2+v
2

(32)

where ri,j is defined as (26). Using MM algorithm, the score
function is derived as:

φt(ri,j) =

(
1 +

2

v

)r2i,j +
2
∣∣∣Ŝi,j

∣∣∣2
v


−1

. (33)

Using (33) and AIP, ŵi,j is updated in a manner similar
to GGD-ILRMA-based SBSS AEC. Analogously, the update
rules of NMF matrices are derived using the recursive approx-
imation technique [16], [24], [27]:

tti,k ← tti,k


∑j

j′=1
αj−j

′

t

∣∣∣Ŝi,j′

∣∣∣2 cti,jr−p

i,j′
vt
k,j′∑j

j′=1
αj−j′

t r−p

i,j′
vt
k,j′


p

p+2

, (34)

vtk,j ← vtk,j


∑I

i=1

∣∣∣Ŝi,j

∣∣∣2 cti,jr−p
i,j t

t
i,k∑I

i=1 r
−p
i,j t

t
i,k


p

p+2

, (35)

where

cti,j =

(
v

v + 2
r2
i,j′

+
2

v + 2

∣∣∣Ŝi,j′

∣∣∣2)−1

(36)

and αt ∈ (0, 1) is a forgetting factor for NMF variables.

D. Semi-Supervised NMF (SSNMF)

In AEC, little attention is paid to online ILRMA-based
SBSS algorithms due to the challenges of implementing NMF
in real-time [14]. Nonetheless, in AEC applications, it is often
feasible to obtain a registered voice dataset of a certain length
beforehand. Therefore, the SSNMF [17] technique can address
this issue. In SSNMF, the basis matrix is pre-trained on the
registered speech dataset before real-time NMF processing.
During online processing, this basis matrix is fixed, and
only the time-dependent activation matrix is updated. This
approach alleviates the clustering problem typically associated
with NMF, as there is only one source and one reference.
The SSNMF technique offers a promising alternative to the
previously mentioned recursive approximation technique.
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Fig. 1. Comparison of tERLE performance in different double-talk cases. (a)
Speech (b) Music.

TABLE I
PARAMETER SETUP

Scenario Speech Music
Algorithm β v p η β v p η

IS-ILRMA - - - 0.992 - - - 0.990
GGD-AuxIVA 0.4 - - 0.970 1 - - 0.970
GGD-ILRMA 0.4 - 1 0.985 1 - 2 0.980
t-AuxIVA - 10 - 0.970 - 30 - 0.970
t-ILRMA - 10 1 0.985 - 30 2 0.980

IV. SIMULATIONS AND RESULTS

A. Experimental Setup

To maintain consistency, we use the same AIR setup as
in [11], where the reverberation time, T60, is approximately
300 ms. We consider the hard-clipping function [10], [19] to
simulate loudspeaker distortions. We prepare two double-talk
scenarios using speech and music signals, respectively. The
signal-to-echo ratio (SER) is set to be 0 dB. In double-talk
speech scenario, two 10-second-long male speech signals from
the CMU ARCTIC dataset [28] are selected as the far-end and
near-end signals, respectively. For SSNMF, we select random
near-end registered speech signals to generate a 40-second pre-
trained dataset. During the pre-training process, basis matrices
are trained under 30 iterations with offline ILMRA algorithms.
In double-talk music scenario, we use the same music signals
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Fig. 2. Average SDR of 10-group double-talk Speech cases based on
t-ILRMA-based SBSS-AEC

TABLE II
DOUBLE-TALK SPEECH SOUND QUALITY

Algorithms PESQ STOI

IS-ILRMA 1.502 0.921
GGD-AuxIVA 1.637 0.954

GGD-ILRMA (proposed) 1.679 0.953
t-AuxIVA (proposed) 1.635 0.955
t-ILRMA (proposed) 1.792 0.960

as in the paper [10].
The sampling rate of all signals is 16 kHz. In short-time

analysis, a Hann window with a length of 1024 samples
and a 75% overlap between consecutive frames is used. The
nonlinear series expansion order N and CTF filter length L are
set to 3 and 5, respectively. The number of basis matrices K is
set to be 8. The AIP initialization setups are consistent to that
in [11]. The forgetting factors of the NMF basis matrix, αGGD

and αt, are set below 0.02. The setup of the other parameters
is shown in Table I.

In this section, we compare the AEC performance of
proposed heavy-tailed distribution-based SBSS-AEC algo-
rithms with IS-ILRMA-based and GGD-AuxIVA-based SBSS-
AEC [10], [11]. We use true echo return loss enhancement
(tERLE) [9] as performance metric. Additionally, perceptual
evaluation of speech quality (PESQ) [29] and short time
objective intelligibility (STOI) [30] are used as performance
evaluation.

B. Simulation Results

First, we compare the performance in double-talk speech
scenario. Fig. 1 (a) shows the tERLE performance of AuxIVA-
based, SSNMF-ILRMA-based with GGD or Student’s t-
distribution, and IS-ILRMA-based online SBSS-AEC algo-
rithms. It is evident that Student’s t-distribution-based algo-
rithms achieve comparable performance, and SSNMF-ILRMA-
based methods outperform AuxIVA-based methods in the last
nine seconds. All heavy-tailed distributions based algorithms
perform better than IS-ILRMA based counterpart under opti-
mal parameter settings, demonstrating robustness and superior



performance.
To illustrate the flexibility of heavy-tailed distribution-based

algorithms more clearly, we present an example of parameter
adjustment for t-ILRMA SBSS-AEC for 10-group double-
talk speech cases from the CMU ARCTIC dataset. Figure 2
shows that when NMF domain parameter p is set to 2 and
the degrees of freedom parameter v is set to 30, relevant
algorithm can achieve best results. These curves highlight
the process of modifying the source model. Table II shows
the average PESQ and STOI performance of 10 double-talk
speech cases with optimal parameter settings where proposed
methods achieve better or comparable sound quality compared
to baseline methods.

In double-talk music scenario, as displayed in Fig. 1 (b), it
is quite obvious that ILRMA-based SBSS-AEC outperforms
AuxIVA-based algorithms. Besides, all the proposed online
ILRMA-based SBSS-AEC algorithms converge much faster
than IS-ILRMA-based algorithms in the fisrt two seconds.
This case demonstrates the superiority of ILRMA-based online
SBSS-AEC algorithms in complex situations.

V. CONCLUSIONS

To further enhance the performance of SBSS-AEC algo-
rithms, in this paper, we adopted two heavy-tailed distribu-
tions, i.e., the complex generalized super-Gaussian distribution
(GGD) and Student’s t-distribution. Based on them, we derived
three novel algorithms, namely, GGD-ILRMA, t-AuxIVA and
t-ILRMA based SBSS-AEC. Besides, online update rules for
NMF were introduced. Simulations validated the effectiveness
and superiority of proposed algorithms.
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[1] J. Benesty, T. Gänsler, D. R. Morgan, M. M. Sondhi, and S. L. Gay,

Advances in network and acoustic echo cancellation. Springer, 2001.
[2] W. Kellermann, “Analysis and design of multirate systems for cancel-

lation of acoustical echoes,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 1988, pp. 2570–2573.
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