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Abstract—This paper addresses missing transcription of short
speeches from changed speakers in streaming ASR. This problem
may be attributed to two factors: existing training data consists
of only a single speaker in each training utterance, and the trans-
former memory of a single speaker during streaming decoding
may impact the decoding of segments from the new speaker. To
improve, we propose to leverage limited left-context streaming
decoding and to include data augmentation of multi-speaker in
training utterances. Our experimental results on Librispeech,
Aishell-1, and SEAME corpus demonstrate 32%, 28%, and 9%
relative improvements in word error rates (WER), character
error rates (CER), and mixed error rates (MER) across English,
Chinese, and code-switching datasets. These findings suggest
robust solutions for real-time ASR applications in complex audio
environments.

I. INTRODUCTION

Since the advent of large-scale models like GPT [1] in
natural language processing (NLP) and Whisper [2] in speech
recognition as well as speech translation, there has been a
significant surge in research aimed at leveraging Large Models
to address a variety of tasks [3], [4]. In the meantime, to
utilize abundant information in speech signals, SpeechGen [5]
explores the application of prompt tuning to enhance the
generative capabilities of Speech Language Models for various
tasks. Also, the Qwen-Audio [6] model creates a universal
audio-language model capable of processing diverse audio
types, from human speech to natural sounds and music. These
models have shown remarkable capabilities in understanding
and generating human language. The final goal is to develop
a single model that can seamlessly handle various tasks while
achieving state-of-the-art performance for each mission.

However, despite the impressive advancements of these
large-scale models, they often fall short of achieving the best
performance on specific tasks when compared to specialized
models with a similar number of parameters. This highlights
the reality that specialized systems are still critical for most
industry applications.

In the area of ASR, the capability to handle as many sce-
narios as possible, as well as computational efficiency, are two
crucial factors when it comes to real applications. Specifically,
traditional reading-style single-speaker speech recognition sys-
tems are no longer sufficient to meet the demands of modern
applications because of the rapid development of the Internet,
and the increasing prevalence of virtual meetings that cause
continuous conversation with multiple speakers has become

increasingly common. These scenarios require ASR systems
to accurately transcribe conversations involving multiple par-
ticipants, sometimes speaking simultaneously, which makes
it more complex than that in single-speaker contexts [7].
Studies like those on streaming speaker-attributed ASR [7]
and Qwen-Audio-Chat, which integrates audio and text inputs
for multi-turn dialogues, emphasize the importance of these
developments [6].

In addition to handling conversational and multi-speaker
scenarios, there is another type of ASR systems that are
designed to process and transcribe speech in real-time, mak-
ing it indispensable for applications that require immediate
feedback, such as live captioning, virtual assistants, and real-
time communication platforms, namely streaming ASR. The
need for low-latency, high-accuracy ASR solutions has driven
significant research and development efforts in this area, such
as RNN-Transducer [8], [9], U2++ Conformer [10], Zipformer-
Transducer [11], even zero-shot streaming implementation for
Whisper model [12].

In this paper, we focus on dealing with scenarios contain-
ing multiple speakers in a single decoding segment in the
streaming ASR task. Specifically, we found that for single-
speaker ASR systems, when performing offline decoding on
sentences containing rapid speaker changes, the transcription
for the changed speakers could be partially or totally missing.
We propose that online streaming decoding can alleviate these
issues to different extents with diverse configurations without
requiring any model fine-tuning. Also, experimental results
show that the multi-speaker data augmentation method [13]
with our refinement strategy further improves the model per-
formance on both single-speaker and multi-speaker testsets.
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Fig. 1. Comparison between Offline and Online decoding for a sentence

This paper is organized as follows. Section I shows the
background of this topic. Section II illustrates related works



Ref: Okay so you can actually apply for your preferred flat at any given town and how it actually. Ah I see but then I can't I can't leave it there for a certain period. I should say probably around eight eight hundred to one k.

Offline: Okay so you can actually apply for your preferred flat at any given time and how it actually.

Online-1: Okey so you can actually apply for your preferred flat at any given time and how it actually.

Online-2: Okay so you can actually apply for your preferred flat at any given time and how it actually.

I should say probably around eight eight hundred to one k.

period. I should say probably around eight eight hundred to one k.

but then I can't I can't leave it there for a certain period. I should say probably around eight eight hundred to one k.

Speaker 1 Speaker 2 Speaker 3

Time (s)

Fig. 2. An inference example of a multi-speaker speech segment using single-speaker ASR model, where the silence gap between each speaker is less than
0.5 seconds. Ref stands for reference text that is manually transcribed, Offline means the model sees the entire sentence when performing decoding. Online-1
and Online-2 perform online stream decoding whose decoding chunksize is 640ms, where Online-1 uses 2.56s left context while Online-2 sees only 1.28s.

to multi-speaker ASR and streaming ASR. Section III then
includes methods, corpus information, model architectures,
and training configurations. Succeedingly is section IV for
experimental results and analysis. Finally, section V concludes
the work.

II. RELATED WORKS

Multi-speaker speech recognition has become an essential
focus area with the increasing prevalence of conversational
and meeting scenarios where multiple participants may speak
simultaneously. A model using token-level serialized output
training (t-SOT) [14] to accurately identify and transcribe
speech from multiple speakers in real-time is proposed [15],
which significantly improves performance in overlapping
speech scenarios. Additionally, a mixture encoder for joint
speech separation and recognition [16] was proposed, lever-
aging explicit speech separation while incorporating cross-
speaker context information to mitigate error propagation,
achieving significant improvements.

Streaming ASR is critical for applications requiring real-
time transcription, such as live captioning and virtual assis-
tants. The introduction of cumulative attention mechanisms
in streaming Transformers reduces latency while maintaining
high accuracy by synchronizing attention heads within the
model [17]. MiniStreamer framework [18], which enhances the
Conformer model with chunked-context masking, optimizing
it for edge devices with limited computational resources. These
advancements illustrate the ongoing efforts to improve the
efficiency and effectiveness of streaming ASR systems in
various real-world applications.

III. EXPERIMENTS

A. Methodologies

1) Limited Left-Context Streaming Decoding: In streaming
ASR, chunk-size and left-context are critical parameters for
balancing latency and accuracy during decoding. Fig. 1 (a)
illustrates an example of online stream decoding where the
Decoding Chunk is audio frames to form a specific chunk-
size of the chunk, and the Left Context involves the amount
of previous audio data considered when processing the current
Decoding Chunk. Chunk-size refers to the length of audio data
processed at one time, with smaller chunks reducing latency
but potentially decreasing accuracy due to less context. In com-
parison, larger chunks increase accuracy at the cost of higher
latency. To simplify, Fig. 1 (b) indicates that Offline Decoding
includes the whole speech segment into one Decoding Chunk.

However, we find that in multi-speaker scenarios, accuracy
is not necessarily improved when given more left context.
On the contrary, when the model sees less left context, it
produces more accurate recognition results, even compared
with the Offline decoding method, which is generally believed
to generate the best annotations. As shown in Fig. 2, for a
single-speaker ASR model using Zipformer architecture [11]
with a causal input layer, the Offline and Online-1 decoding
methods produce results that almost lose all content from
Speaker 2 while the Online-2 decoding method only misses
a few words. This suggests that for a trained single-speaker
causal model, decoding with limited left context in streaming
style can resolve the multi-speaker issues in some respect.

2) Multi-Speaker Data Augmentation: In [13], simply
and randomly combining several speakers’ speech segments
together significantly improves the model performance on
multi-speaker speech recognition while maintaining unharmed
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single-speaker recognition accuracy. Technically, this augmen-
tation method works on-the-fly after speech features are ex-
tracted for batches during training, combining speech features
of segments in one batch from two or three different speakers
to form an augmented new batch. For transcriptions in the
augmented training batch, it would simply add <SC> label,
which stands for Speaker-Change, in between the transcrip-
tion of combined segments while remaining unchanged for
those not chosen for augmentation. Fig. 3 shows how the
augmented annotation formed by given segments from three
different speakers. However, to perform an on-the-fly style of
augmentation, the combination can only occur in each batch
during training, which might significantly reduce the diversity
of combinations between different speakers.

To solve the above issue, we simplify the augment process
by generating the augmented dataset before training, randomly
combining speakers from the whole training set for each epoch,
which maximizes the diversity of combinations of speakers.

RAW-1: Okay so you can actually apply for your preferred flat at any given 
town and how it actually 
RAW-2: Ah I see but then I can't I can't leave it there for a certain period 
RAW-3: I should say probably around eight eight hundred to one k
AUG: Okay so you can actually apply for your preferred flat at any given 
town and how it actually <SC> Ah I see but then I can't I can't leave it there 
for a certain period <SC> I should say probably around eight eight hundred 
to one k.

Fig. 3. An augmentation example of a multi-speaker speech segment. RAW-
{1,2,3} stand for three speech segments from three different speakers. AUG
means the resulting augmented segment that combines the three separate
utterances with <SC> label in between where <SC> stands for Speaker-
Change

B. Data

We perform our experiments on a diversity of datasets
in languages including English, Chinese, and Code-switching
scenarios to show the effectiveness of our methods. Corre-
spondingly, we choose Librispeech [19], Aishell-1 [20], and
SEAME [21] datasets for each language setting since these
datasets are the most widely used for each language for
research purposes in the last few years. Librispeech is a
large-scale corpus of approximately 1,000 hours of English
speech derived from audiobook recordings, containing read
speech recorded by native speakers from the United States.
Aishell-1 is an open-source Mandarin Chinese speech corpus
consisting of about 178 hours of speech data, recorded from
400 speakers with various accents across China, containing
several topics such as news reports and conversational contents,
while recorded in reading style. SEAME (South East Asia
Mandarin-English) is a conversational speech corpus featuring
code-switching between Mandarin and English, collected from
naturally occurring conversations and interviews in Singapore
and Malaysia, in both formal and informal settings. Table I
shows the statistics information for each dataset.

For Librispeech, we only report results on Test-Clean and
Test-Other. DevMan and DevSge are two official subsets for

evaluation purposes of the SEAME corpus. All sets with -M
label stand for simulated Speaker-Mixed sets, consisting of
two or three speakers in one segment, keeping the exact same
duration and number of words as the original sets, following
the multi-speaker data augmentation method mentioned in
section III-A2.

TABLE I
OVERALL SPEECH DATA DISTRIBUTION FOR BOTH ASR MODEL TRAINING

AND TESTING. EN STANDS FOR ENGLISH WHILE CN MEANS CHINESE.
EN-CN CS CORRESPONDS TO ENGLISH CHINESE CODE-SWITCHING.
TRAIN-S MEANS SINGLE-SPEAKER TRAINING SET WHILE TRAIN-M

STANDS FOR MULTI-SPEAKER TRAINING SET.

Corpus Language Subset Duration(Hrs)

Librispeech EN
Train-S / Train-M 961.1
Test-C / Test-C-M 5.4
Test-O / Test-O-M 5.3

Aishell-1 CN
Train-S / Train-M 150.9

Dev / Dev-M 18.1
Test / Test-M 10.0

SEAME EN-CN CS
Train-S / Train-M 93.6

DevMan / DevMan-M 7.5
DevSge / DevSge-M 3.9

C. Model
We perform all of our experiments using zipformer-

transducer architecture, with icefall1 toolkit that is supported
by K22 project. The model architecture involves a zip-
former [11] encoder, a stateless transducer [22] decoder, and a
simple joiner network. The encoder is configured with layers
of 2, 2, 3, 4, 3, and 2, each having subsampling factors
of 1, 2, 4, 8, 4, and 2, respectively, following the official
configuration of zipformer recipe. The input feature is 80-dim
Mel frequency bins, computed on 25-ms windows with a stride
of 10 ms. SpecAugment [23] is enabled for all experiments,
while speed-perturb is disabled, as well as mix precision
training is also disabled. We use 4000 secs, 2000 secs, and
800 secs as model batch sizes for Librispeech, Aishell-1,
and SEAME experiments, respectively. We use BPE [24] as
modeling units for English while using characters for Chinese,
which results in 500 BPEs for Librispeech, 4338 units for
Aishell-1, and 3136 units for SEAME corpus. The context
size is set to one for Aishell-1 and SEAME, while it remains
2 for Librispeech. The learning rate scheduler and optimizer
use the same configuration proposed in zipformer [11], named
Eden LRScheduler and ScaledAdam optimizer, which achieve
faster convergence and better performance than Adam and
significantly reduce warmup steps during training. All of
our models are trained with a maximum of 8x A100-40GB
GPUs according to different batch size configurations for each
corpus.

The models for single-speaker were trained for 40 epochs,
60 epochs, and 60 epochs for the Librispeech, Aishell-1, and
SEAME corpus, respectively. For multi-speaker, the models

1https://github.com/k2-fsa/icefall
2https://github.com/k2-fsa/k2
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TABLE II
WER/CER/MER RESULTS FOR MODELS TRAINED WITH TRAIN-S SETS. OFFLINE-S AND ONLINE-S STAND FOR OFFLINE AND ONLINE DECODING FOR

SINGLE-SPEAKER MODELS. INF SPECIFIED IN CHUNK-SIZE AND LEFT-CONTEXT MEANS UNLIMITED DECODING CHUNK. BOLD NUMBERS ARE THE BEST
RESULTS FOR EACH TESTSET.

Decoding Configs Librispeech Aishell-1 SEAME

Methods Chunk-size Left-Context Test-C Test-O Test-C-M Test-O-M Dev Test Dev-M Test-M DevMan DevSge DevMan-M DevSge-M

Offline-S inf inf 2.74 6.44 3.27 9.97 5.08 5.39 6.64 7.24 16.55 23.68 18.78 25.74

Online-S

320 ms 1280 ms 3.66 9.57 3.74 10.23 5.90 6.46 6.03 6.67 19.09 26.97 20.04 28.17
320 ms 2560 ms 3.55 9.17 3.84 11.14 5.85 6.31 6.30 7.31 18.89 26.83 20.32 28.58
320 ms 5120 ms 3.52 9.07 4.11 12.24 5.85 6.30 6.70 8.33 18.79 26.83 20.74 28.93
640 ms 1280 ms 3.40 8.59 3.44 9.20 5.57 6.11 5.72 6.34 17.94 25.37 18.69 26.54
640 ms 2560 ms 3.29 8.29 3.47 9.91 5.5 6.04 5.92 6.82 17.84 25.26 18.95 26.81
640 ms 5120 ms 3.28 8.18 3.69 11.08 5.5 6.01 6.27 7.63 17.82 25.19 19.47 27.13

were trained with only half of the epochs for single-speaker
because we combined the Train-S and Train-M to form the
final training dataset, keeping similar updating steps for the
single and multi-speaker models.

IV. EXPERIMENTAL RESULTS

The experimental results mainly contain two parts: single-
speaker and multi-speaker. Each model is tested under both
single and multi-speaker scenarios with both offline and online
streaming decoding configurations. Word Error Rate (WER)
is reported for Librispeech, Character Error Rate (CER) is
reported for Aishell-1, and Mix Error Rate (MER) where CER
is calculated for Chinese parts and WER is calculated for
English parts, is reported for SEAME.

A. Single-Speaker Models

In this section, all of our models are trained with Train-S
set of each corpus. Table II shows the results of these models
on the corresponding testsets. In Table II, we can conclude
that for a single-speaker ASR model, testing on single-speaker
testsets would always obtain the best recognition results, either
decoding with offline or online settings, compared with multi-
speaker testsets. It also shows significant performance gaps
in the offline decoding config between corresponding multi-
speaker and single-speaker testsets, especially observed from
Test-Other of Librispeech, Test of Aishell-1, and DevMan of
SEAME, where the gaps reach the range of (13%, 55%) in
relative, respectively.

From online decoding results, it is observed that a larger
decoding chunk-size gives better WER results regardless of
left-context size given for all situations in our experiments.
However, left-context size shows a reversed influence on
single-speaker versus multi-speaker testsets. Specifically, when
changing left-context configurations for single-speaker testsets,
it shows reasonably better performance each time scaling up.
In contrast, in multi-speaker scenarios, the models produce
much worse recognition results, which is around 10% relative
performance degradation for each time left-context size scaling
up. We even find that most of the best results for multi-speaker
testsets come from chunk-size of 640 ms and left-context size
of 1280 ms, such as Test-O-M of Librispeech, Dev-M and
Test-M from Aishell-1, and DevMan-M from SEAME. In this

configuration, the performance gap between single-speaker and
multi-speaker testsets is significantly reduced to a range of
(4%, 8%). The results show consistency with the situation we
present in Fig. 2 that indicates single-speaker ASR systems
produce better recognition results when given less left-context
for multi-speaker speech data.

TABLE III
WER RESULTS FOR MODELS TRAINED WITH THE COMBINATION OF

TRAIN-S AND TRAIN-M SETS FOR LIBRISPEECH. SINGLE AUGMENT
CONFIG STANDS FOR THE MODELS TRAINED WITH THE SAME COPY OF
TRAIN-M FOR EACH EPOCH, WHILE MULTIPLE MEANS THAT IN EACH

EPOCH OF TRAINING, THE MODELS USE DIFFERENT TRAIN-M GENERATED
SEPARATELY. OFFLINE-M AND ONLINE-M MEAN OFFLINE AND ONLINE

DECODING FOR MULTI-SPEAKER MODELS. CHUNK-SIZE FOR ONLINE
DECODING IS FIXED TO 640 MS HERE.

Configs Librispeech

Augment Methods Left-Context Test-C Test-O Test-C-M Test-O-M

Single

Offline-M inf 2.72 6.60 2.80 6.76

Online-M
1280 ms 3.37 8.53 3.39 8.68
2560 ms 3.27 8.32 3.27 8.47
5120 ms 3.28 8.20 3.28 8.44

Multiple

Offline-M inf 2.73 6.59 2.79 6.74

Online-M
1280 ms 3.32 8.47 3.34 8.49
2560 ms 3.23 8.30 3.24 8.40
5120 ms 3.17 8.24 3.20 8.28

B. Multi-Speaker Models

In this section, all of our models are trained with the
combination of Train-S and Train-M sets. To begin with, we
propose two augmentation strategies for Train-M generation
for Librispeech corpus, Single augment means that we only
generate one set of Train-M for all epochs, while Multiple
means that we re-generate Train-M for each epoch, aiming
to obtain more diverse speaker combination cases. Table III
shows the performance of the resulting models. Comparing
the offline decoding performance between the Single and
Multiple augmentation configurations, no obvious difference
is observed. However, when it comes to online streaming
decoding, Multiple augmentation shows a bit of improvement
among most of the testsets and left-context configurations. This
surely suggests that a diversity of combinations of speakers
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TABLE IV
WER/CER/MER RESULTS FOR MODELS TRAINED WITH THE COMBINATION OF TRAIN-S AND TRAIN-M SETS, USING MULTIPLE TRAIN-M AUGMENT
CONFIG. OFFLINE-S STANDS FOR OFFLINE DECODING FOR SINGLE-SPEAKER MODELS, WHILE OFFLINE-M AND ONLINE-M CORRESPOND TO OFFLINE

AND ONLINE DECODING FOR MULTI-SPEAKER MODELS. INF SPECIFIED IN CHUNK-SIZE AND LEFT-CONTEXT MEANS UNLIMITED DECODING CHUNK.

Decoding Configs Librispeech Aishell-1 SEAME

Methods Chunk-size Left-Context Test-C Test-O Test-C-M Test-O-M Dev Test Dev-M Test-M DevMan DevSge DevMan-M DevSge-M

Offline-S inf inf 2.74 6.44 3.27 9.97 5.08 5.39 6.64 7.24 16.55 23.68 18.78 25.74
Offline-M inf inf 2.73 6.59 2.79 6.74 4.80 5.17 4.81 5.24 16.63 23.53 16.78 23.52

Online-M

320 ms 1280 ms 3.58 9.23 3.65 9.45 5.54 5.96 5.48 5.96 18.55 25.96 18.60 26.15
320 ms 2560 ms 3.52 9.05 3.53 9.20 5.40 5.89 5.40 5.87 18.14 25.84 18.56 25.98
320 ms 5120 ms 3.49 8.91 3.51 9.08 5.38 5.87 5.38 5.91 18.34 25.80 18.45 25.95
640 ms 1280 ms 3.32 8.47 3.34 8.49 5.18 5.68 5.19 5.69 17.70 24.79 17.73 24.74
640 ms 2560 ms 3.23 8.30 3.24 8.40 5.13 5.60 5.15 5.62 17.57 24.68 17.57 24.67
640 ms 5120 ms 3.17 8.24 3.20 8.28 5.13 5.58 5.16 5.65 17.55 24.68 17.57 24.68

generalizes the models more effectively. Consequently, Multi-
ple augmentation is applied in our following experiments.

Table IV shows the performance for our multi-speaker ASR
models for each corpus using Multiple data augmentation
configuration. First of all, when comparing offline decoding
results between single and multi-speaker models, significantly
improved results for multi-speaker testsets are observed. In
the meantime, improvements are also obtained regards to
some of the single-speaker testsets. Specifically, Test-Clean of
Librispeech, Dev, and Test of Aishell-1, and DevSge of SEAME
show improved results. In contrast, the results of Test-Other
of Librispeech and DevMan of SEAME become a bit worse
but still acceptable. Another interesting finding is that when it
comes to online streaming decoding, consistent performance
is found for all test sets and decoding configurations; that is,
when decoding chunk size and left-context size are expanded
wider, better recognition accuracy is obtained for not only
single-speaker testsets but also multi-speaker counterparts.
Finally, the results of multi-speaker testsets compared with
single-speaker counterparts are now similar among all de-
coding configurations using the multi-speaker ASR models
compared against single-speaker models shown in table II.

The results suggest that when models are exposed to varying
conditions and combinations of different speakers, the effects
of streaming decoding configurations on multi-speaker testsets
are consistent with those observed for single-speaker testsets.
This consistency indicates that the improvements in recogni-
tion accuracy with larger decoding chunk sizes and expanded
left-context sizes apply similarly to both single and multi-
speaker scenarios, highlighting the robustness of the model
in handling diverse and complex audio.

V. CONCLUSION

This study demonstrates effective strategies to improve
single-speaker ASR systems in multi-speaker scenarios
through online streaming decoding and multi-speaker data
augmentation. By optimizing left-context configurations and
employing diverse speaker combinations, we achieved sig-
nificant improvements in speech recognition accuracy. Our
methods offer practical solutions for real-time ASR applica-
tions, enhancing their ability to handle complex and dynamic

audio environments. The results underscore the importance of
specialized configurations and data augmentation in advancing
ASR technology to meet the demands of modern commu-
nication systems. Future work will focus on further refining
these techniques for tasks such as online speaker diarization
and voice activity detection, together with speech recognition
function.
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