
Transformer Attention Matrix Multiplication Design
using 4× 4 Systolic Arrays

Muhammad Sayyid Afif‡, Infall Syafalni‡§, Nana Sutisna‡§, and Trio Adiono‡§
‡School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia

§University Center of Excellence on Microelectronics, Bandung Institute of Technology, Indonesia

Abstract—Transformers have revolutionized natural language
processing (NLP) with their multihead attention mechanism,
enabling efficient parallel processing of text data. This paper
enhances Transformer performance using a systolic array archi-
tecture for matrix multiplication. We optimize the computation
process by leveraging parallel partitioning to accelerate self and
multi-head attention mechanisms within Transformer models.
Utilizing the BERT model, we partition its 768-dimensional
vectors and process to make multiple smaller 4 × 4 structures.
The experiments were conducted using software simulations
and FPGA Zybo 7020 hardware design synthesis. The primary
objective is to improve computational throughput and resource
efficiency, leading to the development of lightweight and high-
performance Transformer models. This study highlights the
potential of parallel partitioning with systolic arrays in matrices
multiplication advancing the Transformer’s computation process-
ing tasks. Our experiment simulates the parallel partition and
synthesizes the hardware architecture design. By comparing the
conventional nested loop and parallel partition method, we find
a 66.9% speed increase, with maximum frequencies of 91.7. Our
findings contribute to optimizing Transformer models for various
applications, emphasizing the role of hardware acceleration.

Index Terms—Transformer, Multihead Attention, Accelerator,
Systolic Array, Natural Language Processing.

I. INTRODUCTION

TRANSFORMER have revolutionized the field of natural
language processing. The Transformer model introduced

a novel mechanism called multihead attention, which has
proven to be highly effective in capturing contextual rela-
tionships and dependencies in text data [1]. Using multihead
attention, the Transformer model can process text in parallel
without relying on sequential operations like recurrent neural
networks or convolutional neural networks [2], which has
led to significant improvements in tasks such as machine
translation [3].

The use of transformer models is not limited to the field of
natural language processing (NLP) but has also been expanded
to image processing. One prominent implementation is the
use of transformer models in image processing, known as
Vision Transformer (ViT) [4]. To support the performance of
ViT, a dedicated accelerator has been developed called ViT
Accelerator (ViA) [5].

The transformer model itself is still in the stage of efficiency
and optimization, ranging from accuracy, and speed, to compu-
tational flexibility. Research on transformer models using Field
Programmable Gate Array (FPGA) has been conducted [6],
opening up opportunities for further research. We conducted
experiments as follows:

MatMul

Scale

Mask (opt)

SoftMax

MatMul

Q K V

Self dot product attention

Attention

Fig. 1: Self head attention [1]

• Utilizing the systolic array property in matrix multiplica-
tion by evaluating and developing the matrix computation
process using parallel partitions.

• Proposed architecture to be used for conducting experi-
ments using FPGA Zybo 7020 hardware.

Therefore, the objectives of conducting these experiments
are as follows:

• The main objective is to accelerate the transformer model
specifically in self and multi-head attention.

• Aims to enhance performance with limited resources
by evaluating and developing the matrix computation
process.

• By minimizing the available resources, a lightweight
model can be created.

The continuation of this paper consists of several chapters,
arranged as follows. Chapter II will discuss the theoretical
foundations that support the methods to be used, along with



several related works relevant to the proposed method. Chapter
III contains the proposed method, including the method and
architecture to be proposed. Chapter IV presents how the
experiment is conducted. Chapter V contains the experimental
results. Chapter VI discusses the conclusion and future devel-
opment.

II. RELATED WORKS

A. Self-Head Attention

In broad terms, the transformer model consists of three
parts: word embedding, encoder blocks, and decoder blocks.
Within the decoder block, there is a component called Atten-
tion used to compute the relationships between words simul-
taneously. Within this, vectors are collected to form matrices
of query (Q), key (K), and value (V ). These matrices are
then computed into Self-Head Attention using the following
formula [1]:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

B. Multi-Head Attention

Multi-head attention is the application of several self-head
attentions running in parallel with separate parameters. After
the calculation of each head is completed, the results of
these calculations are combined. This can help the model
capture more complex relationships between words and enable
the model to represent the input data better, resulting in
richer and more contextual outcomes, thus addressing more
complex tasks. Multi-head attention is computed according to
the following formula [1]:

Multihead(Q,K, V ) = Concat(head1, ..., headn) (2)

C. Systolic Array

A systolic system is an architecture designed to perform pro-
cesses in parallel, using multiple simple processing elements.
Simplicity with orderly communication and control structures
have great advantages over complicated structures in design
and implementation, the cells in the systolic system are usually
interconnected to form a systolic array or systolic tree.

Since early 1984, CMU has been working on the design of
Warp engines using systolic processors, which were intended
to be fast and powerful computing engines for many low-
level signal processing and image processing tasks [7]. The
Warp processor family uses a systolic array that can efficiently
implement a variety of systolic algorithms, including Fast
Fourier Transform, matrix multiplication, and two-dimensional
convolution [8].

Replacing processing elements (PE) with PE arrays, or cells
as shown in Fig.3.b can achieve higher computing throughput
without increasing memory bandwidth. Each data from the
main memory is processed several times and sent back to
memory [9].

MatMul

Scale

Mask (opt)

Scale

MatMul

Q K V

Linear Linear Linear

Concat

Linear

M
ulti head

attention

h

h

Fig. 2: Multi head attention [1]

MEMORY

Process

A

PEPEPE PE

PEPEPE PE

PEPEPE PE

PEPEPE PE

M
EM

O
R
Y

MEMORYB

Fig. 3: A) Normal computation. B) Systolic Array

III. PROPOSED METHOD

A. Parallel Partition

Parallelization here involves partitioning and paralleling the
computation of large-dimensional matrices. Matrix partition-
ing consists of breaking down large-dimensional matrices into
several smaller-dimensional matrix parts. In this case, we use a
4×4 smaller matrix. We use the BERT model as the foundation
of our method. The BERT model utilizes a 768-dimensional
vector [10]. With the dimensions 4× 768, we will partition it
into 4× 4, which will iterate 192 times.

In Fig.4, a matrix Q with dimensions of 4 × 768 will be
multiplied by a large matrix KT with dimensions of 4× 768.



4,1

1,1

4,768

1,768Matrix
Q

1,41,1

768,4768,1

Matrix
KT

1,1

4,1

1,3

4,4

Matrix G

G1 + G2 + … + G192 = G

Total Sum
Matrix Multiplication

1,1 to
4,4

1,765
to

4,768

Q

1,1 to
4,4

1,765
to

4,768

Kt

Multiply

=

1,1 to
4,4

1,1 to
4,4

G

G1

G192

KT1Q1

KT192Q192

Fig. 4: Q and Kt partition to form matrix G

4,1

1,1

4,768

1,768
Matrix V

1,1

4,1

1,4

4,4

Matrix G

Att1 + Att2 + … + Att192 = Attention

Concatenate

4,1

1,1

4,768

1,768Matrix
Attention

Matrix Multiplication

1,1 to
4,4

G

1,1 to
4,4

1,765
to

4,768

V

Multiply

=

1,1 to
4,4

1,1 to
4,4

Attention`

Att1

Att192V192

V1

Fig. 5: V partition to form Attention

The matrices Q and KT will be partitioned into 4 × 4 small
matrices, Q1− 192 and KT

1− 192, which will then be multiplied
pairwise to form temporary matrices G1− 192 with dimensions
of 4 × 4. G1− 192 will then be summed up entirely to form
the matrix G with dimensions of 4× 4.

In Fig.5, the matrix V with dimensions of 4 × 768 will
be partitioned into small matrices V1− 192 with dimensions of
4× 4. Each V1− 192 will be multiplied by the matrix G. The
multiplication result is Att1− 192, each with dimensions of
4×4. To obtain the final Attention matrix, matrices Att1− 192

will be sequentially concatenated until the Attention matrix
has dimensions of 4× 768.

B. Architecture

Fig.6 provides an overview of our hardware setup, utilizing
2 Block RAM (BRAM) modules as input and 1 BRAM
module as output. The IP Core contains signal control and
a systolic array consisting of multiple Processing Elements
(PEs).

Fig.7 is our proposed processing element. The input from
matrices A and B is kept in the register and will be forwarded
in the next cycle. A is multiplied by B to get output C, and the
result will be maintained and accumulated in the next cycle
to get the desired output.

IV. EXPERIMENT

A. Systolic Array & Bram

We use Vivado 2019.1 in this experiment. We first created
the processing element and integrated it with the systolic array.
We use algorithm 1 as the processing element. If the reset
signal is true, all outputs will equal 0. Else, Output C is

calculated with Output C + (Input A × Input B), while
Forward A and Forward B are filled with Input A and
Input B respectively.

We implement finite state machine (FSM) as shown in Fig.8
into the main code. The system will start at Idle state, waiting
for the process to begin with a start signal. If the start signal
is active and the num of input parameters are zero, it moves
to the Done state, resetting the start signal, and moving again
to the Idle state. Otherwise, it moves to the Read state, where
the data from Bram A and Bram B will be read, and the
write − enabled signal activated. At the Write state, data
from Bram A and Bram B that have been processed will
be written into Bram C as the output. If the data that came
in does not equal the num of input parameter, it will return
to the Read state. If equals, the next phase is in the Done state,
resetting the start signals, and moving to Idle states awaiting
the next process or cycle.

Algorithm 1 Processing Element
Input : reset, clock, InputA, InputB
Output : Forward A, Forward B, Output C

procedure ALWAYS @(POSEDGE CLOCK)
if reset IS TRUE then

SET Forward A, Forward B, Output C TO 0
else

SET Output C TO Output C + (Input A ×
Input B)

SET Forward A TO Input A
SET Forward B TO Input B

end if
end procedure



BRAM_A

BRAM_B

Signal Control

BRAM_C

ARM Cortex-9

UART

PC PE PE PE PE

PE

PE

PE

PE PE PE

PE PE PE

PE PE PE

Systolic Array

start &
done
[0:1]

num_of_input
[9:0]

Data
[31:0]

Address
[31:0]

Data [127:0]
Address [31:0]

A
XI

4

Fig. 6: Proposed Architecture Overview

B

FW_B

A

FW_A

C

REG

REG

REG

Processing
Element (PE)

Fig. 7: Architecture of processing element

B. Parallel Partition

We simulate the parallel partition in Python. For the first
part, we multiply the matrix Q and KT . Same as Fig.4 with
algorithm 2. The second part is multiplying the matrix result
from the first part (matrix G) to matrix V , same as Fig.5 with
algorithm 3.

Algorithm 2 Q×KT partition
Input : QMatrix, KTMatrix
Output : GMatrix

SET block size TO 4
for i do FROM 0 TO 768 STEP 4 DO

SET block Query TO QMatrix [ALL ROW, i TO i+
block size]

SET block KeyT TO KTMatrix [i TO i+block size,
ALL COLUMN]

SET block result TO DOT PRODUCT OF
block Query, block KeyT )

ADD block result TO GMatrix
end for
PRINT GMatrix

Algorithm 3 G× V partition
Input : GMatrix, VMatrix
Output : Attention

SET block size TO 4
for s do FROM 0 TO 768 STEP 4 DO

SET block V alue TO VMatrix [ALL ROW, s TO s+
block size]

SET block attention TO DOT PRODUCT OF
(GMatrix, block V alue)

CONCATENATE block attention TO Attention
end for
PRINT Attention



IDLE

READ

WRITE

DONE

start =1

num_of_input >0

start =1

num_of_input =0

write
_en is activedata in =

num_of_input

data

in ≠ num_of_input

wait for next process

Fig. 8: Finite state machine

0 2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

Run Conducted

sp
ee

d
in

[m
s]

Parallel Partition
Nested Loop

Fig. 9: Python simulation results

V. EXPERIMENTAL RESULTS

Fig.9 is the result of the simulation of algorithm 2 and
3 from Python by using Google Colab. While Fig.10 is
using C in CodeBlocks. For comparison, we include matrices
multiplied only using a conventional nested loop in Python.
From conducting 20 times runs, we get the slowed method is
a conventional nested loop with 31.60 ms as the slowest and
13.40 ms as the fastest, averaging at 18.79 ms. Then followed
by parallel partition in Python with 16.10 ms as the slowest
and 7.27 ms as the fastest, averaging at 11.26 ms. The faster
is the parallel partition in C, with 0.28 ms as the slowest and
0.19 ms as the fastest, averaging 0.22 ms.

Using the design in Fig.6 we run synthesis and implementa-
tion in Vivado 2019.1 without any problem. The worst negative
slack (WNS) result is 9.1 ns with a clock period of 20 ns. For
finding max frequencies we use equation 3. We get 0.0917
Ghz or 91.7 Mhz. Table I breaks down the utilization and
report timing.

Fmax = 1/(T −WNS) (3)

0 2 4 6 8 10 12 14 16 18 20 22
0.1

0.15

0.2

0.25

0.3

Run Conducted

sp
ee

d
in

[m
s]

Parallel Partition

Fig. 10: Parallel Partition in C

Site Type Used Fixed Available Util%

Slice LUTs 8354 0 53200 15.70
LUT as Logic 6622 0 53200 12.45

LUT as Memory 1732 0 17400 9.95
LUT as Distributed RAM 1308 0

LUT as Shift Register 424 0
Slice Registers 9309 0 106400 8.75

Register as Flip Flop 9309 0 106400 8.75
Register as Latch 0 0 106400 0.00

F7 Muxes 6 0 266000 0.02
F8 Muxes 0 0 13300 0.00

Block RAM Tile 8 0 140 5.71
RAMB36/FIFO 8 0 140 5.71

RAMB36E1 only 8
RAMB18 0 0 280 0.00

DSPs 0 0 220 0.00

TABLE I: Timing and utilization report

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusion

This experiment simulation and hardware test demonstrate
that parallel partition is faster than the conventional nested
loops in Python. The process speed increase averaged around
66.9%. Calculating parallel partitions with C language proved
even faster, with an average speed of 0.22 ms. Additionally,
the proposed architecture synthesis and implementation design
using Zybo 7020 with Vivado 2019.1 showed maximum
frequencies of 91.7 Mhz without issues.

B. Future Works

This experiment finds several upgrades for future works that
can be pursued to enhance the performance and capability of
the transformer model, such as:

• Hardware implementation: Our future work is imple-
menting the design and architectures into the zybo 7020
hardware.

• Scaling into larger and more complex models of the trans-
former: Our experiment can be expanded to handle larger
data sets. With more layers and parameters, the model



can capture more complicated patterns and dependencies
on data. As a result, increasing the accuracy, making the
model more reliable.

• The parallel partition can be applied to other machine
learning models: Not only the transformer model but to
other models using matrix multiplication. By optimizing
the models using parallel partitions, we can achieve
performance gains.

• Optimizing beyond natural language processing: It can
be optimized not only as natural language processing but
various domains such as robotics and computer vision.
Expanding the application in various scopes.

ACKNOWLEDGEMENT

This work is supported by the 2024 ITB Young Researcher
Program provided by LPPM, Bandung Institute of Technology
under grant no. [STEI1.PN-6-04-2024].

REFERENCES

[1] A. Vaswani et al., Attention Is All You Need arXiv, Aug.
01, 2023. Accessed: Dec. 03, 2023. [Online]. Available:
http://arxiv.org/abs/1706.03762

[2] H. Peng, R. Schwartz, D. Li, and N. A. Smith, A Mixture of h−1 Heads
is Better than h Heads arXiv, May 13, 2020. Accessed: Dec. 03, 2023.
[Online]. Available: http://arxiv.org/abs/2005.06537

[3] S. M. Lakew, M. Cettolo, and M. Federico, A Comparison of Trans-
former and Recurrent Neural Networks on Multilingual Neural Machine
Translation. In Proceedings of the 27th International Conference on
Computational Linguistics, New Mexico, USA: Aug.2018 pp. 641–652.

[4] Vaswani, Ashish, et al. Attention is all you need. Advances in neural
information processing systems 30 (2017).

[5] Dosovitskiy, Alexey et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. ArXiv abs/2010.11929 (2020): n. pag.

[6] B. Li et al., FTRANS: Energy-Efficient Acceleration of Transformers using
FPGA vol. 7, 2020, doi: https://doi.org/10.1145/3370748.3406567.

[7] Kung, H.T. Systolic Algorithms for the CMU Warp Processor, In Pro-
ceedings of the Seventh International Conference on Pattern Recognition,
pages 570-577.1984.

[8] E. Arnould, H. Kung, O. Menzilcioglu and K. Sarocky, A systolic array
computer, ICASSP ’85. IEEE International Conference on Acoustics,
Speech, and Signal Processing, Tampa, FL, USA, 1985, pp. 232-235,
doi: 10.1109/ICASSP.1985.1168488.

[9] Kung, Why systolic architectures?, in Computer, vol. 15, no. 1, pp. 37-46,
Jan. 1982, doi: 10.1109/MC.1982.1653825.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding arXiv,
May 24, 2019. Available: http://arxiv.org/abs/1810.04805


