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Abstract—In this paper, we address the challenge of single-
channel speech separation in noisy environments, where two
active speakers and background noise are present in the observed
signal. We propose using a dual path recursive neural network
(DPRNN) to estimate the desired binaural signals from the
single-channel noisy input. When the estimated binaural signal
is played through headsets, listeners perceive the two speakers as
originating from opposite directions, with the background noise
coming from a separate direction. Additionally, the background
noise is perceived to be further away from the two speakers,
resulting in an improved signal-to-noise ratio (SNR). Research in
psychoacoustics indicates that spatial unmasking in the percep-
tual domain enhances speech intelligibility in complex auditory
scenes. This hypothesis is supported by both subjective and
objective evaluations, including a significant 26% improvement
in modified rhyme test (MRT) scores reported in this paper.

Index Terms—Source separation, binaural hearing, speech
enhancement, speech intelligibility.

I. INTRODUCTION

Single-channel speech separation (SCSS), which focuses on
isolating speech signals from two competing speakers using
a single microphone observation, for enhancing both speech
quality and intelligibility, consistently poses a challenge within
the realms of source separation and speech enhancement [1],
[2], [3]. Numerous approaches have been explored to address
the SCSS problem, such as deep clustering methods [4],
time-domain end-to-end methods [5], [6], and frequency-
domain mask-based techniques [7]. With the development of
more well-designed and compounded neural networks, the
performance of speech separation is reported to be further
improved [8], [9], [10]. However, the existence of acoustic
background noise makes the SCSS problem more complicated
and degrades the performance of existing methods by a large
margin [11], [12]. Recently, many robust SCSS approaches
have been introduced to mitigate the impact of additive noise.
For example, [13] demonstrates the relative inseparability of
noise and introduces a training objective inspired by SI-SDR.
This approach exploits the inseparability of noise to implicitly
segment the signal and reduce noise separation errors, thereby
facilitating the training of more efficient separation systems

using noisy oracle sources. Similarly, [14] proposes a novel
network that unifies speech enhancement and separation using
gradient modulation to improve noise robustness. Despite these
advancements, these methods still encounter issues such as
speech distortion and residual noise.

Despite these efforts and advances in solving the problem
of SCSS in noisy environments, the majority of existing
methods focus on producing a monaural output for each
target speaker, which ignores the benefits of the human bin-
aural auditory perception. Research on psychoacoustics has
shown that (normal) human hearing is intrinsically capable
of localizing sound sources and suppressing unwanted noise,
known as the cocktail party effect, suggesting that properly
spatializing sound sources in the perceptual domain helps
in speech separation. More specifically, three typical sce-
narios of binaural presentations were investigated [15], [16],
i.e., homophasic, heterophasic, and antiphasic. Among these
methods, antiphasic presentation, where speech and noise are
perceived from opposite directions, was demonstrated to offer
the highest speech intelligibility [15], [17], [18], [19]. Based
on the aforementioned findings, a single-input/binaural-output
(SIBO) antiphasic noise reduction method [20] and a multiple-
input/binaural-output (MIBO) antiphasic target speaker extrac-
tion method [21] were proposed, where significant improve-
ment in speech intelligibility was reported compared to the
corresponding monaural methods, especially in environments
with low signal-to-noise ratios (SNRs) and low signal-to-
interference ratios (SIRs).

In this paper, we adopt a dual-path recurrent neural network
(DPRNN) structure [8], which includes an encoder, a rendering
network, and a decoder, to produce a binaural output from
a single-channel noisy observation. When the binaural signal
is played back to listeners through headsets, it creates the
perception of two competing speakers from opposite directions
(e.g., the right and left sides of the head), while the background
noise appears to be coming from behind. Additionally, the
background noise is perceived to be further away from the
two speakers, leading to an improved SNR. Simulations and
experiments are conducted to evaluate the performance of the
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proposed method. Both objective and subjective test results
indicate that this method effectively improves speech quality
and intelligibility.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider the scenario where a single microphone cap-
tures a mixture of two competing speech signals along with
additional background noise. The observed signal can be
formulated as

y(n) = s1(n) + s2(n) + v(n), (1)

where s1(n) and s2(n) are the clean speech signals of the two
speakers, v(n) denotes the additive noise, and n is the discrete
time index, which will be omitted hereinafter for readability.

This work aims to produce a binaural signal (for the left
and right ears) from y utilizing a deep neural network (DNN).
When the estimated binaural signal is presented to listeners
through headsets, the two competing speakers and background
noise will be perceived from three distinct directions/zones in
the perceptual domain. Thus, the training target of the network
can be formulated as

yL =

2∑
i=1

hi
L ∗ si + hv

L ∗ v, (2)

yR =

2∑
i=1

hi
R ∗ si + hv

R ∗ v, (3)

where ∗ denotes the linear convolution operation, hi
L, i = 1, 2,

and hv
L denote the binaural room impulse responses (BRIRs)

from the desired rendering locations of si, i = 1, 2, and
v to the left ear, respectively, and hi

R, i = 1, 2, and hv
R

denote the BRIRs from the desired locations to the right ear
correspondingly. The BRIRs control the perceived locations
of each source. In this work, we aim to render s1 and s2 to
opposite directions, i.e., to the left and right side of the head,
respectively, (or vice versa), while rendering v to the backside
of the head.

III. METHOD DERIVATION

A. Model Architecture

As shown in Fig. 1(a), we adopt the DPRNN [8] as the
backbone network to estimate the binaural signal in an end-
to-end manner. The network consists of three modules: an
encoder, a rendering network, and a decoder.

1) Encoder: The encoder is a 1-dimensional (1D) convo-
lution layer with kernel size 16 and stride 8, followed by
a rectified linear unit (ReLU) activation function. The input
noisy speech sequence is then mapped into a latent feature
space with dimension C = 256, thus giving a representation
A ∈ RC×L, where L is the sequence length after the
convolution operation.
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Fig. 1. Model architecture: (a) flowchart of the rendering based DPRNN-
SIBO and (b) details of the DPRNN block.

2) Rendering Network: The rendering network is the essen-
tial module, which begins with a layer normalization operation
to stabilize the training process. Then, it is followed by a
special 1D convolution layer with a kernel size and stride of 1,
denoted as a 1× 1 convolution, which serves as a bottleneck
to further fuse the information. The processed feature is then
segmented into short frames of length K = 250 with a frame
shift of P = 125. Thus, the feature dimension is changed to
RC×K×T , where T is the number of frames.

The core part of the rendering network consists of 4 repeti-
tions of a DPRNN block, illustrated in Fig. 1(b). Each DPRNN
block contains an intra-path and an inter-path module. Both
modules include a bidirectional LSTM (Bi-LSTM) layer, a fully
connected (FC) layer and the layer normalization operation.
In addition, skip connections are adopted for both modules.
The 4 repeats of DPRNN block fully capture and exploit both
local and long-term dependencies of the feature in and across
short time frames. A PReLU function with one parameter
follows and introduces a nonlinear transform. Then, a 2D
convolution layer (kernel size 1) is employed to expand the
feature dimension from C to 2 × C to produce stacked two
gain vectors related to the left and right ear outputs.

After the overlap-add operation, each gain vector is trans-
formed back to size RC×L, which is then passed through a self-
gate module (composed of a hyperbolic tangent and a sigmoid
activation function), a 1×1 1D convolution layer, and a ReLU
function. Finally, the rendering network yields the binaural
transfer functions, which are then elementwise multiplied in
with the noisy representation A to produce estimates of the
binaural signal in latent space.

3) Decoder: The decoder is a 1D deconvolution layer to
reconstruct binaural estimates, i.e., ŷL and ŷR, from the latent-
space binaural estimates, which is a reverse process of the
encoder.

B. Rendering Permutation Invariant Training Objective

The loss function is formulated using the scale-invariant
SNR (SI-SNR) [22]. Specifically, for the left and right ear
channels, the loss function is defined as follows:
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L (ŷL | yL) = 10 log10
E
(
|yL − ŷL|2

)
E (|yL|2)

, (4)

L (ŷR | yR) = 10 log10
E
(
|yR − ŷR|2

)
E (|yR|2)

, (5)

where E(·) denotes mathematical expectation. Considering the
binaural output, the loss function should be

L (ŷL, ŷR) = L (ŷL | yL) + L (ŷR | yR) . (6)

Note that rendering s1 and s2 to the left and right sides,
respectively, or vice versa, are both acceptable for training.
Thus, there are two possible permutations. To handle this, we
exploit a direction permutation invariant loss during training:

L = min {L(ŷL1
, ŷR1

), L(ŷL2
, ŷR2

)} , (7)

where L(ŷL1
, ŷR1

) = L (ŷL | yL1
) + L (ŷR | yR1

) denotes
the loss when rendering s1 and s2 to left and right sides,
respectively. In contrast, L(ŷL2 , ŷR2) denotes the permutation
case, i.e., the right and left side, respectively.

IV. SIMULATIONS

A. Training Setup

1) Dataset: We employ the WHAM! dataset [11] for both
training and development purposes, which is constructed by
incorporating noise from the WHAM! noise dataset [11] into
the standard Wall Street Journal (WSJ0) two-speaker mixture
dataset [4]. During the process of blending the two speech
signals, the longer signal is adjusted to the length of the shorter
one by truncating it in a ‘minimum’ mode, with a sampling
rate set at 8 kHz. Our objective is to spatially position the two
speech signals to the left and right sides, each at a distance
of 1 meter from the listener’s head. Concurrently, the additional
noise is spatially rendered to the rear of the head, at varying
distances of 1 meter, 2 meters, and 4 meters.

The location of each source is controlled by the correspond-
ing BRIRs taken from the dataset [23]. The training targets are
then generated by (2) and (3).

2) Training Configuration: For comparison, we exploit the
original DPRNN (referred to as DPRNN-base in the following)
with the same network structure as the baseline model. Unlike
the proposed model (named as DPRNN-SIBO hereinafter),
DPRNN-base achieves source separation by directly estimating
the waveform of s1 and s2.

To train the models, we use the adaptive moment (Adam)
estimation optimizer [24]. The initial learning rate is set to
10−3. Given the case when training loss does not decrease in
3 consecutive epochs, the learning rate would accordingly half
its value.

B. Simulation Results

1) Directional Perception Validation: To assess the effec-
tiveness of the DPRNN-SIBO’s rendering outcomes, we have
synthesized 20 distinct test mixtures derived from the WHAM!
dataset. It is important to note that these test signals were

correct - 91.7%
wrong - 8.3%

Fig. 2. Percentage of correct answers in the direction perception test. Correct
answers include either “speaker 1 from left, speaker 2 from right, noise from
back” or “speaker 2 from left, speaker 1 from right, noise from back.” Any
other choices are considered incorrect.

 0 s                     1 s        1.5 s                    2.5 s       3 s                       4 s

Fig. 3. Schematic diagram of observed signal construction, composed of five
segments: x1, x2, and x3 are the mixed signal, observed signal, and noise
segment, respectively, with two silent segments of 0.5 seconds in the middle.

not present in either the training or development datasets.
Additionally, we have established an input SNR of 0 dB, which
is calculated as the ratio of the power of the mixed speech
signals to that of the accompanying noise.

We invited five participants without hearing loss to listen
to the binaural outputs of DPRNN-SIBO and listeners were
required to select the direction of two speakers and noise.
They are instructed to choose one from the following options
for each source: 1) left, 2) right, and 3) back. Since we train
DPRNN-SIBO with direction permutation invariant loss, both
choices, i.e., “speaker 1 from left, speaker 2 from right, noise
from back” and “speaker 2 from left, speaker 1 from right,
noise from back” are considered to be correct. The findings are
depicted in Fig. 2. It is evident that the direction of speakers
and noise were properly chosen by most participants, leading
to a 91.7% accuracy rate, which proves that DPRNN-SIBO
can render sources to desired directions.

2) Impact of Rendering Distance: To evaluate the impact
of rendering distance of the additive noise, we constructed 20
sets of observation signals as illustrated in Fig. 3. Both speech
signals and noise are the same as those used in Section IV-B1.
As shown in Fig. 3, the observed signal is 4-second long,
consisting of five segments: a 1-second segment of 2-mixed
speech signal, denoted as x1 = s1+ s2, 0.5-second of silence,
another 1-second of 2-mixed speech and noise, denoted as
x2 = s1+ s2+ v, another 0.5-second of silence, and 1-second
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Fig. 4. Output SNR of the binaural signals estimated by DPRNN-SIBO and
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Fig. 5. Percentages of correct answers for input mixture, estimation of
DPRNN-base, DPRNN-SIBO-I, and DPRNN-SIBO-II in the MRT test.

of additive noise, denoted as x3 = v. Note that segment x1, x3

is utilized to calculate SNR and segment x2 is used to make
the observed signal similar to that in the training set. The input
SNR is set to be 0 dB.

With the proposed DPRNN-SIBO, we can obtain the left
ear and right ear outputs for x1 and x3, which are denoted as
{x̂L,1, x̂R,1}, and {x̂L,3, x̂R,3}, respectively. Then the output
SNRs of left and right ears are defined as follows:

SNRL = 10 log10
E
(
|x̂L,1|2

)
E (|x̂L,3|2)

, (8)

SNRR = 10 log10
E
(
|x̂R,1|2

)
E (|x̂R,3|2)

. (9)

Here, we define the binaural SNR (biSNR) as follows:

biSNR =
1

2
(SNRL + SNRR). (10)

Figure 4 lists the biSNRs achieved by DPRNN-SIBO and the
ground-truth biSNRs, which are computed using (10) with
the ground-truth signals formulated by (2) and (3). It can be
shown that the biSNR of the output of DPRNN-SIBO closely
approximates the ground-truth biSNR, proving that DPRNN-
SIBO can render the additive noise to the desired distance.

3) MRT Tests: To evaluate the intelligibility improvement
achieved by DPRNN-SIBO, modified rhyme tests (MRTs) [25]
were conducted. We selected 48 carrier utterances from MRT
database in the same way as our previous work [20], [21].
Then, the MRT speech signals were mixed with speech signals
randomly selected from WSJ0 test dataset and additive noise
from WHAM! noise dataset. The input SIRs were set to −4 dB
and 0 dB and SNRs were randomly selected from −6 dB
to 3 dB. DPRNN-SIBO and DPRNN-base are adopted to
render or separate the speech. We consider two configurations
of DPRNN-SIBO, denoted as DPRNN-SIBO-I and DPRNN-
SIBO-II, both of which were designed to render the 2 speech
signals to 1 m away from the listener to the left and right
direction, while rendering the additive noise to 1 m and 4 m
away from the listener to the backward direction, respectively.
To evaluate speech intelligibility, participants were required to
choose the word they hear in the MRT carrier sentence “please
select the word –” from all the testing signals. More correct
answers provided by the participants indicate higher speech
intelligibility achieved by the tested method.

Figure 5 shows the percentage of correct answers of MRT
from DPRNN-base and the proposed two methods, DPRNN-
SIBO-I and DPRNN-SIBO-II. We can see that all tested meth-
ods are capable of increasing speech intelligibility by a large
margin as compared to the MRT results of the mixed signal.
Among them, DPRNN-base increases the accuracy by 9% and
16% in the 0 dB and −4 dB experiments while DPRNN-
SIBO-I increases the accuracy by 14% and 26%, respectively.
Also, both configurations of the proposed method outper-
form DPRNN-base in both input SIR scenarios. Specifically,
DPRNN-SIBO-I achieves 10% increase than DPRNN-base in
−4 dB, and 5% increase in 0 dB. Moreover, we note that
DPRNN-SIBO-I consistently performs better than DPRNN-
SIBO-II. This can be attributed to the fact that DPRNN-
SIBO-II pushes the noise source to a distance of 4 m for
more noise suppression, which results in more distortion of
the speech signal. This also explains the lower percentage of
correct answers for DPRNN-base.

V. CONCLUSIONS

This paper presented a deep learning-based single-
input/binaural-output rendering method to improve speech
intelligibility in complex acoustic environments, where speech
signals from two competing speakers and background noise are
captured by a single microphone. A rendering network based
on DPRNN was trained to take the single-channel mixture as
input and generate a binaural signal. When delivered through
headphones, this binaural signal allows listeners to perceive
each speaker from opposite directions while placing the noise
further away in the back direction. The proposed rendering
method effectively reduces interference from competing speak-
ers and improves speech intelligibility, especially in low-SIR
conditions. MRT results show a notable 26% improvement
over the mixed speech signal, demonstrating the effectiveness
of the proposed method.
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