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Abstract—Image-text retrieval is a fundamental task in image
understanding. This task aims to retrieve the most relevant
information from another modality based on the given image or
text. Recent approaches focus on training large neural networks
to bridge the gap between visual and textual domains. However,
these models are computationally expensive and not explainable
regarding how the data from different modalities are aligned.
End-to-end optimized models, such as large neural networks,
can only output the final results, making it difficult for humans
to understand the reasoning behind the model’s predictions.
Hence, we propose a green learning solution, Green Multi-Modal
Alignment (GMA), for computational efficiency and mathematical
transparency. We reduce trainable parameters to 3% compared
to fine-tuning the whole image and text encoders. Experimental
results show that our model can outperform the SOTA re-
trieval models in text-to-image and image-to-text retrieval on the
Flick30k and MS-COCO datasets. Besides, our alignment process
can incorporate visual and text encoder models trained separately
and generalize well to unseen image-text pairs.

Index Terms—Image-text retrieval, Multimodal Alignment,
Green Learning, Image Understanding.

I. INTRODUCTION

Image-text retrieval is a fundamental step of image under-
standing in computer vision. Real-world information can be
represented as an array of pixels or textual descriptions. Texts
and images are the interfaces to access stored knowledge.
The image-text retrieval task aims to find the most relevant
counterparts of the image-text pairs given either an image or a
textual description. Fig. 1 shows an example of an image and
its paired textual descriptions.

Fig. 1. The example of image-to-text retrieval. By giving an image, we need
to retrieve the paired captions from the candidate set.

One of the challenges in image-text retrieval is explain-
ability. Humans will expect a complete reasoning procedure
instead of a magic answer from the model. However, the com-
plicated models hide the reasoning procedures in the numerical
latent spaces, and the nonlinearities in the model make the
whole inference process a black box. To this end, we propose a
stagewise methodology, dividing the retrieval process into three
stages: 1) Global Alignment, 2) Image Cluster Alignment, and
3) Text Cluster Alignment. Each alignment stage consists of
three modules: a) alignment, b) subdomain clustering, and c)
subdomain feature selection. More fine-grained information
can be revealed in the module’s feature selection process.

The second issue is the availability of paired image and
text data. It is critical to have high-quality pairs in both
domains when we train the dual encoders jointly. However,
most datasets only contain high-quality data in a single modal-
ity. For example, ImageNet [1] and MS-COCO [2] contain
diverse images but lack sentence-level textual descriptions
associated with the images. On the contrary, in the textual
datasets, the BooksCorpus (800M words) [3] and English
Wikipedia (2,500M words) contain high-quality paragraphs yet
without corresponding images. Instead of jointly training text
and image encoders from scratch, we adopt the pre-trained
encoders in the image and text domains. Then, we proposed
a green-learning alignment process to deal with the lack of
paired information.

We propose a new scheme called Green Multi-Modal Align-
ment (GMA). The method utilizes the frozen image and
text encoder models and aligns the representations using the
proposed alignment process. Our contributions are summarized
as follows:

• Instead of fine-tuning the pre-trained encoders, we design
the stagewise alignment procedure. The number of train-
able parameters is around 3% compared to fine-tuning
the whole encoders, making our model computationally
efficient.

• The modularized design provides explainability in the re-
trieval process. The task can be divided into subproblems.
Since the token importance can defined in the clustering
and feature selection modules, we can understand the
alignment statistically within the stages.

• The stagewise alignments are linear projections without
any nonlinearity. Thus, the alignment process can be
easily reversed from one to another.

• We conduct extensive experiments on two public multi-



modal datasets. The results demonstrate that our method
can significantly improve the performance in text-to-
image retrieval.

II. RELATED WORK

The existing methods can be divided into two categories:
1) Cross-Modal retrieval and 2) Visual-Language models
(VLMs). Cross-modal models consist of Convolutional Neural
Networks (CNNs) for extracting features from images and
Recurrent Neural Networks (RNNs) for processing text data.
On the other hand, VLMs employ Large Language Models
(LLMs) that work in tandem with the visual foundational
models for optimal performance.

A. Cross-Modal Retrieval

The cross-modal retrieval algorithms consist of feature ex-
tractors and representation matching. Zheng et al. [4] adopt
deep CNN as the backbone to extract the image features and
deep RNN as the backbone to obtain text features. The instance
loss optimizes the two feature extractors, which can project
the representations from different modalities onto the joint
latent space. Lee et al. [5] utilize bottom-up attention object
detector [6] to obtain semantic representations of images and
conduct the word-level matching in the captions.

Liu et al. [7] formulate the information as a graph and adopt
the structural matching to retrieve the closest sub-graph. The
finer image features can be obtained from the region of interest,
and the finer word representations can be formulated from the
part-of-speech(pos) tagging [8].

As the metric learning, Hadsell et al. [9] propose the idea
of contrastive learning. The objective function aims to increase
the distance between unpaired image and text representations
while reducing the distance between paired representations.
However, pairwise optimization relies heavily on the quality
of paired data. We align two pre-trained encoders trained
separately in the text and image domains to overcome the need
for paired data.

B. Visual-Language Model

Transformers [10] have significantly succeeded in natural
language processing and computer vision tasks. The image-text
encoders can share similar architectures. CLIP [11] demon-
strates the impressive visual representations jointly trained
with the paired text descriptions. The model uses a contrastive
learning scheme to project image and text representations onto
a shared latent space. This shared space allows for a better
understanding of the relationship between the two modalities.
The dual-encoder(image-text) architecture is prevalent in mul-
timodal applications.

Despite achieving state-of-the-art performance, large visual-
language pre-trained models still have shortcomings in infer-
ence. The matching process is not transparent, and humans
can’t understand the decision-making within the fully con-
nected layers as they lack semantic meanings. Apart from
explainability, the jointly fine-tuning process is computation-
ally expensive. To handle the transparency and efficiency, we

introduce the Green Learning Alignment algorithm, which uses
separately pre-trained image-text encoders. The idea of Green
Learning was proposed by Kuo et al. [12] and aims to reduce
the computational cost of backpropagation while providing a
theoretically explainable learning process for various applica-
tions.

III. METHOD

The algorithm can be divided into three stages: 1) Global
Alignment, 2) Image Cluster Alignment, and 3) Text Cluster
Alignment. We adopt the stage-wise approach to approximate
the complicated decision-making process rather than building
the visual-language fundamental models from scratch. Starting
from the pre-trained image and text feature extractors, we
keep the pre-trained model frozen to maintain its ability to
generalize with unpaired data in the matching process. We
align the representations by training additional one-layered
adaptor matrices to project the representations onto the joint
latent space. Precisely, the alignment process consists of three
modules: a) alignment, b) sub-domain clustering, and c) sub-
domain feature selection, where sub-domain clustering and
feature selection are conducted in both image and text domains,
as shown in Fig.2.

A. Alignment

In the alignment process, we do not fine-tune the pre-trained
encoders. We train a lightweight linear transformation in the
visual and textual domains to align the two representation
spaces. The visual and text embeddings can be formulated as:

evis = F(Image) ∈ Rdvis

etxt = G(Caption) ∈ Rdtxt ,
(1)

where evis, etxt are the image and text embeddings, F ,G are
the frozen image and text encoder models, and dvis, dtxt are
the dimensions of the image and text representations. With
the deterministic representations, the matching process can be
denoted as:

sim(Aevis, Betxt) = sim(zvis, ztxt), (2)

where A ∈ Rdjoint×dvis and B ∈ Rdjoint×dtxt represent
the trainable image-text alignment matrices, z ∈ Rdjoint

represents the vector in the joint space, and sim(., .) represents
the similarity metric. We adopt the cosine similarity as the
similarity metric, namely sim(u, v) = u·v

∥u∥∥v∥ . We can further
optimize the trainable parameters with the contrastive learning
loss function [13].

Lcon = − log
exp(sim(zi, zj)/τ)∑N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
. (3)

Here, (i, j) denotes the paired image and sentence in the
sampled batch, N denotes the batch size, and τ ∈ R denotes
the temperature hyperparameter. 1 ∈ {0, 1} is an indicator
function, and the value is one while [k ̸= i]. The objective
function collects the representations of paired samples and
pushes apart the distances of unpaired samples in the latent
space.
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Fig. 2. The overall algorithm design of Alignment. The first stage is the global alignment. The second and third stages include fine-grained clustering and
image- and text-domain feature selections.

Hence, the problem can be formulated as an optimization
problem, and all the transformations are linear. We can define
the inverse projection in the joint latent space without nonlin-
earities.

evis = A−1zvis

etxt = B−1ztxt,
(4)

where A−1 ∈ Rdvis∗djoint and B−1 ∈ Rdtxt∗djoint represent
the inverse transformation from the joint space to the original
image-text representations. We define the reconstruction loss
for both the image and text modality.

Lrecon =
∥∥A−1zvis − evis

∥∥
2

+
∥∥B−1ztxt − etxt

∥∥
2
,

(5)

The alignment process is a linear transformation conducted
by the A and B matrices. The objective function can be
denoted as:

L = αLcon + βLrecon, (6)

where α, β, and γ ∈ R represent hyperparameters in training.
The linear alignment provides the invertible transformation
from the image-text modality to the joint latent space and vice
versa. However, the single-layered alignment is too simple to
match all the samples. Thus, we cluster the data to form sub-
datasets and utilize the stagewise alignments for the detailed
decision.

B. Sub-domain Clustering

With the alignment process, we can find similar represen-
tations by linear transformations. However, the transformation
can only take the global representations, which means that
the images/captions are represented as dvis-/dtxt-dimensional
vectors. In previous research, fine-grained information was
also crucial in information-matching tasks. The image/sentence

representations are the pooled output from the tokens in the
prevailing transformer models.

Due to the complexity of the fine-grained token representa-
tions, it is challenging to train the tokenwise alignment in a
brutal force manner. Thus, we adopt the clustering algorithms
and use the clustering results to obtain the crucial tokens. The
crucial token selection will be introduced in section III-C. We
can reduce the feature dimension from the number of tokens
and perform a second-stage alignment.

The clustering is based on the KMeans algorithm. To ensure
the consistency of alignment and clustering, we use the l2-
norm of normalized representations as the distance metric.

∥ũ− ṽ∥22 = ∥ũ∥22 + ∥ṽ∥22 − 2ũṽ = 2− 2sim(u, v), (7)

where ũ and ṽ are the normalized representations, namely ũ =
u

∥u∥ . The clustering probability can be denoted as

prob(u ∈ clusi) =
eϵ

′(2−2sim(u,cenj))∑K
j=1 e

ϵ′(2−2sim(u,ceni))

=
eϵ·sim(u,ceni)∑K
j=1 e

ϵ·sim(u,cenj)
,

(8)

where clusi and ceni represent the i-th cluster and i-th
centroid vector, respectively. K represents the number of
clusters and ϵ is a hyperparameter. If the ϵ increases, the
probability distribution will concentrate on a certain class.
If the ϵ decreases, the probability distribution will become
uniform.

C. Feature Selection

Clustering results provide pseudo-labels for further fea-
ture selections. We adopt Discriminant Feature Selection [14]
(DFT) to select informative and reduce feature dimensions.
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DFT is a supervised feature selection process that measures the
dimension-wise importance. For a given 1D input feature, we
can order the samples by the feature values and bind the feature
dimension with the sample maximum and sample minimum.
Then, we can partition the samples along the given dimension
and calculate the partition purity by weighted cross-entropies
with the pseudo-labels obtained from section III-B. A feature
is more discriminant if it has a lower loss value. Then, we can
plot the loss value curve from the lowest to the highest and
use the elbow point to select discriminant features from the
whole feature set.

Fig. 3. Visualization of DFT. Red and orange dots represent the binary labels.
The partition metric is the weighted sum of the left and right binary cross-
entropy.

Separating the whole dataset into subsets allows us to
conduct the discriminant feature test among the tokens with
the pseudo-labels from the clustering results. Thus, the token-
level alignments can be performed using the same procedure
as the global-level alignment.

D. Mathematical Expression

The overall alignment process can be divided into three
modules: 1) global matching, 2) sub-domain clustering, and
3) sub-domain matching. The sub-domain clustering and align-
ment will be conducted within the image and the text domain.
We can aggregate the alignments in the sub-problem to ap-
proximate the overall alignment.

sim(image, text)

= sim(W visF(image),W txtG(text))

= sim(W vis[Gvis;Tvis],W
txt[Gtxt;Ttxt])

∼ sim(W vis
globalGvis,W

txt
globalGtxt)

+ sim(W vis
tokens[Gvis;Tvis],W

txt
g Gtxt)

+ sim(W vis
globalGvis,W

txt
tokens[Gtxt;Ttxt]),

(9)

where Gvis and Gtxt denote the pooled outputs from the
feature extractors (global features), Tvis and Ttxt denote the
token, i.e. fine-grained, features, W .

. denote the alignment
matrices corresponding to different subsets from the clustering
results. Due to the computational cost, we cannot directly
collect all token features. Therefore, we conduct the feature
selection process based on the clustering results.

The feature selection process is an approximation based on
the clustering results. The process is denoted as the combina-
tion of the conditional probabilities. For simplicity, we ignore

the alignment matrix in the following representations.

E[sim(F(image),G(text))]
= E[E[sim(F(image),G(text))]|image ∈ C1; text ∈ C2]

∼ E[sim(Gvis, Gtxt)]

+ E[E[sim(DFT ([Gvis;Tvis]), Gtxt)|image ∈ C1]]

+ E[E[sim(Gvis, DFT ([Gtxt;Ttxt]))|text ∈ C2]],
(10)

where DFT (.) represents the feature selection and dimension
reduction process in section III-C, and C1 and C2 represent
the KMeans cluster sets. Instead of training a complicated
alignment process from the token level output of the feature
extractor, we propose the stagewise decomposition on the
dataset and train simpler structures for the subsets. Meanwhile,
the alignments in the stages are linear, which provides the
inversion operation and preserves the dual accessibility in both
image and text domains.

IV. EXPERIMENTS

A. Dataset

We conduct the image-to-text and text-to-image retrieval
on the image-text benchmark: Flickr30k and MS-COCO. The
Flickr30k dataset [15] contains 31,000 images, and every
image has five paired captions. The training set contains 29,000
images; the validation and testing sets contain 1,000. The MS-
COCO [2] is a larger-scale dataset with 123,287 images, each
containing at least five captions. We follow the ‘Karpathy’
splitting for the experiments [16]: 113,287 images for training,
5,000 for validation, and 5,000 for testing. We use the two
benchmarks with different sizes to demonstrate the scalability
and generalizability of our approaches. The performance is
evaluated using the Recall@K metric where K ∈ {1, 5, 10}.
The notation K denotes the top-K matches from the candidate
set. The retrieval will be considered a true positive once the
predicted matches include the paired ground truth.

B. Retrieval

We conducted the experiments and compared our alignment
approach to the SOTA retrieval models. The results are shown
in Table. I. In the experiments, we extract information from
the frozen CLIP image and text encoder. The CLIP encoder
contains more than 428M parameters. However, we do not fine-
tune the overall encoder in our alignment process; instead, we
train additional alignment matrices. The trainable parameters
can be reduced from 428M to 9.43M ( 2.2%).

In Flickr30k (1k testing set), our approach outperforms
other image-to-text and text-to-image retrieval methods. The
alignment can improve the recall@1 by 0.6% in the image-to-
text retrieval. Meanwhile, our approach provides a 6% boost in
text-to-image retrieval. RCAR [17] needs dual-way optimized
models, namely image-to-text and text-to-image. Our method
is optimized in a feed-forward manner and ensembles the
substructures directly.

In MS-COCO (5k testing set), our method provides compet-
itive performance in image-to-text retrieval and outperforms
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TABLE I
THE FLICKR30K(1K TESTING SET) AND MSCOCO(5K TESTING SET) DATASET RETRIEVAL PERFORMANCE. WE COMPARE THE SINGLE-MODEL

PERFORMANCE AMONG ALL MULTI-MODAL RETRIEVAL MODELS. THE NUMBERS ARE TAKEN FROM DIAO ET AL. [17] R@1 REPRESENTS RECALL@1 FOR
SIMPLICITY.

Flickr30k (1k testing set) MS-COCO (5k testing set)
image-to-text text-to-image image-to-text text-to-image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
SCAN [5] 67.4 90.3 95.8 48.6 77.7 85.2 50.4 82.2 90.0 38.6 69.3 80.4

VSRN [18] 71.3 90.6 96.0 54.7 81.8 88.2 53.0 81.1 89.4 40.5 70.6 81.1
CAAN [19] 70.1 91.6 97.2 52.8 79.0 87.9 52.5 83.3 90.9 41.2 70.3 82.9

IMRAM [20] 74.1 93.0 96.6 53.9 79.4 87.2 53.7 83.2 91.0 39.7 69.1 79.8
MMCA [21] 74.2 92.8 96.4 54.8 81.4 87.8 54.0 82.5 90.7 38.7 69.7 80.8
GSMN [7] 76.4 94.3 97.3 57.4 82.3 89.0 – – – – – –

SGRAF [22] 77.8 94.1 97.4 58.5 83.0 88.8 57.8 84.9 91.6 41.9 70.7 81.3
SHAN [23] 74.6 93.5 96.9 55.3 81.3 88.4 – – – – – –
WCGL [24] 74.8 93.3 96.8 54.8 80.6 87.5 – – – – – –
RCAR [17] 78.7 94.6 97.6 59.5 84.0 89.5 59.6 85.8 92.4 42.5 71.7 81.8

SGRAFS [8] 79.2 95.3 97.7 58.3 83.1 89.2 58.0 85.1 91.6 41.7 71.2 81.5
CLIP [11] 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.8 62.4 72.2

GMA(Ours) 88.6 98.9 99.6 74.8 93.5 96.7 58.6 83.2 90.0 45.3 72.6 82.8

the others in text-to-image retrieval by a boost of 2.1% in
Recall@1. We achieve the best text-to-image retrieval perfor-
mance among the two datasets, showcasing our approach’s
scalability.

C. Visual Feature Comparison
This section demonstrates the alignment between the vi-

sual/text encoders, which are trained separately. Starting from
the jointly trained CLIP structure, we change the text encoders
into the RoBERTa [25] and the visual encoder into a CNN-
based object detector [6].

The results are shown in Table II. The best performance
comes from the jointly train models, whose representations are
preliminarily aligned in the pre-trained process. Compared to
the CLIP visual encoder, the features from the object detector
are weaker in the alignment process. On the other hand, the
separately trained text encoder, RoBERTa [25], does not take
harm from the unpaired training dataset. The representations
from the CLIP visual encoder and the RoBERTa text encoder
can provide a competitive performance in image-to-text re-
trieval and a better performance in text-to-image retrieval than
the original CLIP. The encoder can be adapted to the retrieval
application without fine-tuning with the paired text/text data.

V. CONCLUSION AND FUTURE WORK

Our approach can achieve outstanding performance in both
image-to-text and text-to-image retrieval tasks. Furthermore,
our method involves a step-by-step alignment process that
maintains compatibility in the decision-making procedure. We
divide the alignment into global and sub-domain matching and
apply a feature selection method to decrease the input feature
dimensions. All the sub-processes can be expressed statistically
rather than the black-box outputs. To ensure computational
efficiency, we have frozen the visual and text encoders and
only trained the alignment matrices, accounting for only about
3% of the parameters compared to the original model.

We have tested our approach of aligning visual and text
encoders trained separately. In the testing dataset, we found
that the pre-trained text encoder can improve the performance
of text-to-image retrieval. Replacing the text encoder can also
lead to similar performance in image-to-text retrieval.

We are working on developing a purely green learning so-
lution to image understanding in the visible future. By aiming
not only for transparency but also computational efficiency, we
can have a better understanding of the multimodal information
representation.
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