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Abstract—Automobiles are essential to society, but accidents
involving older drivers are increasing. Driving Assistance Systems
(DASs) have been developed to prevent such accidents. An essen-
tial goal is to build on this by implementing a system that provides
adaptive assistance without burdening drivers with different
characteristics. Accurately estimating driver characteristics is
essential for this purpose. In contrast to studies that use in-
vehicle sensor data through a Controller Area Network (CAN)-
bus data, which requires additional equipment for data collection
and is accessible to only a limited number of people, a more
efficient and accessible approach is needed. Previous studies have
shown that driving styles can be estimated using easily accessible
Global Positioning System (GPS) data alone. We posit that the
psychological driving style, which is the attitude and orientation
for driving and affects the driver’s behavior, can also be estimated
from GPS data. In this study, we focus on developing a Driving
Style Questionnaire (DSQ) as an indicator of the psychological
driving style recognition model. The experimental results reveal
differences in some features of all the GPS data between the high
and low groups, which are divided by the median for each DSQ
item on the two road types. Additionally, the findings indicate
that the model with GPS data achieves the F1-macro greater
than the random-assignment baseline on five out of eight of the
DSQ items in the majority, and the average macro F1-score is
0.596, a difference of 0.036 from 0.632 for the model with CAN-
bus data. The proposed GPS-based recognition model contributes
to the development of personalized assistance systems without the
burden of excessive sensor installation costs.

I. INTRODUCTION

Automobiles are crucial to society, but they cause traffic
accidents. This issue is more severe for older adults because
as people age, their vulnerability to accidents or loss of life in
a traffic accident increases. According to a Centers for Disease
Control and Prevention report, about 7,500 older adults were
killed in traffic crashes, and almost 200,000 were treated in
emergency departments for crash injuries in 2020 [1].

Driving Assistance Systems (DASs), which provide vital in-
formation and warnings to drivers about circumstances that can
improve driving safety and reduce traffic accidents, constitute
a solution for preventing these issues.

However, these systems are generally designed for drivers
in the current market [2]. This system leads to a potential
mismatch between the driver and the system. One solution
is to design support systems on the basis of understanding
driver behavior [3], which is influenced by various factors, such
as traffic, conditions, the environment, context, and personal

characteristics [4]. Marafie et al. [5] reported that a personality-
based driving agent improves the driver’s experience. Kimura
et al. [6] also reported that personalizing assistance and the ba-
sis of driver characteristics possibly improve drivers’ behavior
more effectively. These results indicate that an essential goal
of DASs is to provide adaptive driving assistance suitable for
drivers with different driving characteristics. To achieve this
goal, using a Machine Learning (ML) model to accurately esti-
mate drivers’ characteristics, which are crucial in determining
their behavior on the road, is the first step in implementing
adaptive DASs without burden on a driver.

Some previous studies have focused on estimating driver
characteristics using Controller Area Network (CAN)-bus data,
a commonly used source for analyzing driving behavior [7],
to provide a new direction for adaptive DASs. Wang et al.
[8] proposed a prediction model for Big Five personality traits
that with CAN-bus data. This study shows that driving data
can automatically identify individual personality traits. Kimura
et al. [9] estimated a driver’s psychological characteristics,
such as cognitive function, psychological driving style, and
workload sensitivity from on-road driving data through a CAN-
bus and a Global Positioning System (GPS) sensor. This study
shows that the proposed model can accurately estimate a
driver’s cognitive function and characteristics.

While CAN-bus data are relatively accurate and frequent,
obtaining driving sensor data through CAN-bus requires labo-
rious processes like using data loggers for data collection [7].
Thus, it is difficult for all but a few companies or universities
to collect scale data through a CAN-bus. A smartphone has
a GPS sensor, and an accelerometer is a favorite platform for
sensing a driver’s behavior as another data source since it does
not require additional equipment and is more straightforward
than CAN-bus data. Furthermore, it is often used as hardware
for a system to provide feedback according to analysis [5]. GPS
sensor data are more reliable than accelerometer data since the
orientation of a smartphone is not essential for obtaining GPS
data [10]. Furthermore, they are easy to access and applicable
to many vehicles/drivers [7].

In this context, some previous studies have focused on
learning driving style representations, which generally aim to
obtain latent representations of a driver’s fine-grained driving
habits [11] from GPS data and make use of such represen-
tations to identify drivers because the learned driving style



TABLE I
IN-VEHICLE SENSOR DATA THROUGH A CAN-BUS AND GPS SENSOR.

Sensor Data Unit
CAN-bus

1 Steering angle deg
2 EPS torque Nm
3 Forward acceleration m/s2

4 Lateral acceleration m/s2

5 Yaw rate deg/s
6 Speed km/h
7 Accelerator position %
8 Brake pressure MPa
9 Fuel consumption ml

GPS sensor
10 Longitude deg
11 Latitude deg

representations act as the “driver DNA” [12]. Chowdhury et
al. [13] built an ML model for solving unique driver identi-
fication problems using smartphone GPS data as an indirect
measurement of vehicle speed and acceleration. This study
implies that a driver’s driving style can be analyzed using
GPS data. Additionally, accelerator pedal and steering wheel
signals, which can be measured directly by a CAN-bus, reflect
the interaction between the driver and the vehicle. In contrast,
speed and acceleration, which can be determined from both
CAN-bus data and GPS data, are measures of driving styles
that reflect specific driving preferences and habits [8].

On the basis of these results, we posit that psychological
driving style, which is the attitude and orientation for driving
and affects a driver’s behavior, can also be estimated from
GPS data alone. In this study, we use the Driving Style
Questionnaire (DSQ) [3], which is based on a self-report
questionnaire, as an indicator of psychological driving style.
In [6], the effectiveness of the driving support is suggested to
depend on the drivers’ scores on the DSQ scale. We classified
drivers with high and low scores of DSQ items.

Hence, as a novel challenge, we aim to develop a recognition
model of psychological driving style from on-road driving data
through a GPS sensor via ML models in this study.

II. DATASET

In this study, we use a dataset provided by the Institutes of
Innovation for Future Society of Nagoya University [14], the
same as that used in [9]. The dataset was collected from 24
older adults (12 males and 12 females) aged 50 to 79 years
(the average age was 66 years). They drove a car equipped
with several in-vehicle sensors through the CAN-bus and real-
time kinematics GPS sensor (JAVAD Delta-3) twice each on
the same public road in Japan, and 48 sets of driving session
data were collected. We use 9 CAN-bus data and GPS sensor
data for comparison experiments. Table I details 11 CAN-bus
and GPS sensor data.

However, after removing incomplete or obviously inferior
data, we retained 32 sets of driving session data from 23
drivers. Hence, for some drivers, one set of driving sessions
is utilized. The Ethical Committee of Nagoya University

TABLE II
DRIVING STYLE QUESTIONNAIRE (DSQ).

Item
1 Confidence in driving skill
2 Hesitation for driving
3 Impatience in driving
4 Methodical driving
5 Preparatory maneuvers at traffic signals
6 Importance of automobile for self-expression
7 Moodiness in driving
8 Anxiety about traffic accidents

Fig. 1. Violin plots of the DSQ scores. The DSQ unit is on a scale from 1
to 4, and each violin plot represents each DSQ item. Each red line indicates
the median of 23 drivers. The values are 2.5, 2.0, 2.0, 3.0, 2.0, 2.0, 1.5 and
2.0, respectively.

approved all procedures in this study. Informed consent was
obtained from all drivers before the experiments were con-
ducted.

The driving tests were conducted on public roads. All
participants first drove on an arterial road and then circulated
in a residential area. The driving duration ranged from 2,324 s
to 4,762 s, with an average of 2,907 s, and the mileage ranged
from 10,079 m to 14,810 m, with an average of 12,109 m.

In addition to the driving tests, the drivers answered the
DSQ, which is based on a self-report questionnaire and was
introduced by [3] for characterizing driving style from a
psychological aspect. Table II details the items of the DSQ.
The DSQ includes eight items measured on a scale from 1 to
4. Each item is associated with two questions, and their mean
value represents the score for the item. Fig. 1 shows violin
plots of the scores for each DSQ item.

III. METHOD

This section presents a psychological driving style estima-
tion method that uses GPS data alone. An overview of our
model is shown in Fig. 2.

A. Data Segmentation

Estimating psychological characteristics is challenging be-
cause we do not know when or where differences in drivers’
characteristics are exhibited. Kimura et al. [9] hypothesized
that it is possible to estimate drivers’ psychological char-
acteristics by focusing on the segmentation of road types
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Fig. 2. Overview of our model. Arrows indicate GPS data flow. First, whole
GPS data is segmented according to road type and cleaned. Then, primary
and secondary GPS data are generated, and features are extracted. Finally, the
DSQ is estimated via ML models with processed GPS data.

and partial driving data because the ability to drive safely
varies across different road types. This study indicates that
the estimation accuracy of the DSQ items by a method based
on the hypothesis is higher than that of the method with whole
driving data.

On the basis of this result, we largely followed the model
introduced by [9]. First, we classified the whole GPS data into
two road types, arterial roads and intersections, using the vehi-
cle position obtained through the GPS sensor. The intersections
are located in a residential area. Furthermore, we eliminated
incomplete intersection data and different driving directions at
the same intersection. We treated all these intersections as the
same road types, but features were extracted separately because
the visibility, ease of driving, and directions were different.
Furthermore, when the data are arterial roads, we arranged the
segment points so that the average number of seconds for each
segment was in the set [ALL, 60, 30, 15, 10, 5, 3]. “All” means
that no division is used. In [9], the intersection data were also
segmented by brake sensor data. However, we did not do this
because we only used GPS data in this study.

B. Data Cleaning

In the following section, we discuss the main challenges
that arise from working with GPS data. The following speed,
heading, longitudinal acceleration, and angular speed in this
section are described in detail in section III-C

The first challenge is to process point cloud data. Point
clouds mostly occur at very low speeds or if the vehicle
stands still in one place for some time [15]. Those points
do not represent any car movement and lead to high angular
speed. To address this problem, when the speed was very low
(< 2km/h), the points were removed, and then the points were
filled via a linear interpolation method.

The second challenge is outliers. The set of driving session
data we use contains an enormous number of GPS data points
with inferior accuracy. GPS signals are affected by events
such as urban tunneling and sensor error. Thus, we designed
a filtering method to address this problem. First, outliers
were removed, and then their points were filled via a linear
interpolation method, the same as that used for the point cloud.
We used an outlier detection method based on the Interquartile
Range (IQR) considering longitudinal acceleration and angular
speed data and set k = 2.25 to identify outliers. All the GPS
data points were subsequently filtered with a Butterworth filter
[16] because the smallest deviations in latitude and longitude

Fig. 3. Example of time-series GPS angular speed before (left) and after
(middle) our data cleaning method and CAN-bus velocity of the steering angle
(right) when a vehicle curves at an intersection

can lead to high lateral and longitudinal acceleration [15]. The
filter was a low pass filter with a degree of 2 and a cutoff
frequency of 1 Hz. The filter was applied bidirectionally in the
forward and reverse directions to cancel the phase delay in the
data. Finally, for the arterial road data, we used the one with the
smallest number of outliers detected from the filtered data for
some drivers with two sets of driving sessions because large
missing parts or GPS data with inferior accuracy were still
found. On the other hand, we removed only the intersection
data if outliers were still detected from the filtered data for the
same reason as in the arterial road data.

We used one data at the arterial roads and four straight and
two curve data at the intersections where all drivers’ data were
recorded after this cleaning in the experiments.

Fig. 3 shows one example of the time-series GPS angular
speed before and after our data cleaning method and the CAN-
bus velocity of the steering angle, which is the first derivative
with respect to time for the steering angle when a vehicle
curves at an intersection. These time-series data had point
clouds ranging from 23 to 30 in each frame. Since the CAN-
bus data and GPS data are not the same but similar, we scaled
these data on a scale of 0 to 1 to focus only on the shape
of these time series data. The point clouds considerably affect
GPS angular speed before data cleaning. However, after data
cleaning, the data behave like the CAN-bus velocity of the
steering angle, which can be confirmed.

C. Data Generation and Feature Extraction

In this dataset, GPS data are collected at approximately 10
Hz. They consist of attributes such as the timestamp, longitude,
and latitude.

We employed six primary and secondary basic data types to
capture driving styles: speed, longitudinal acceleration, angular
speed, lateral acceleration, longitudinal jerk, and lateral jerk.
When two points’ longitudes and latitudes are given, the
distance (m) and the heading (deg) between the two points
can be computed. The heading represents the current direction
compared with North, and its range is (0, 360]. We computed
the first derivative of the distance with respect to time to obtain
the speed (m/s). Furthermore, we implemented a moving
mean filter to make them smooth for speed and heading.

Few important secondary data are computed from these
primary GPS measurements, namely, speed and heading. The
longitudinal acceleration (m/s2) can be computed from con-
secutive speed measurement samples via the equation ex-
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pressed as:

acclong =
∆v

∆t
(1)

where ∆v is the speed variation (vn − vn−1), and ∆t is
the temporal variation. The GPS data in our dataset have
a sampling frequency of approximately 10 Hz, so ∆t is
approximately 100 msec. The angular speed (rad/s), which
represents the rate of change in heading, can be computed from
consecutive heading measurement samples via the expression
specified by [13]:

angspeed =
∆θ

∆t
· π

180
(2)

where ∆θ is the heading variation. Given the vehicle’s
heading, before computing the angular speed we modified the
heading variation via the following equation:

f(∆θ) =


∆θ − 360 if ∆θ > 180,
360 + ∆θ if ∆θ < −180,
∆θ otherwise.

(3)

The lateral acceleration (m/s2) can be evaluated via the
expression specified in [13] and [17]:

acclat =
v2

R
= v · angspeed (4)

where v is the current time value and R is the turn radius,
as introduced by [17]. The jerk, which represents the rate
of change in acceleration, can be computed from consecutive
accelerations. Therefore, we compute the first derivative with
respect to time for the longitudinal acceleration and the lateral
acceleration and use them as the longitudinal jerk (m/s3) and
the lateral jerk (m/s3), respectively. Thus, the above equations
can compute secondary data from primary GPS data.

The statistical features of the generated primary and sec-
ondary GPS data were extracted to estimate the DSQ via
ML models. These statistical features are the mean, median,
skewness, kurtosis, variance, and max. Finally, 36 (six data
× six statistics) features were extracted. When a driver has
multiple data at the same intersection, we computed the mean
value of each feature.

D. Machine Learning Model

We used logistic regression with L2 regularization, a linear
support vector machine, and random forest models to estimate
the DSQ results. We split scores of the DSQ items on the
basis of the median value to create binary classification labels
as shown in Fig. 1 and then conduct binary classification. The
model outputs the DSQ items’ class categories (high or low).

IV. EXPERIMENTAL SETTINGS

As an evaluation criterion for the classification model, we
report the macro F1-score. We conduct binary classification
for DSQ estimation. The parameter C values of the logistic
regression and linear support vector machine are selected from
the set [0.001, 0.01, 0.1, 1, 10, 100]. The maximum depth of
the tree of the random forest is selected from the set [3, 5, 7, 9,

11]. We perform an exhaustive search of specified parameter
values to select the best value in the training set. We compute
the feature significance of a real-valued feature to a binary
targets (high or low) as a p-value on the Kolmogorov-Smirnov
(KS) test, which is a nonparametric hypothesis test that statis-
tically examines differences in distribution. A p < 0.05 was
considered statistically significant in this study. Therefore, we
only include features that are statistically significant for each
fold to avoid overfitting and reduce computational cost because
there are 9036 features on arterial road data and 216 features
on intersection data from the GPS sensor. We use leave-one-
person-out cross-validation to evaluate the classification model.

In addition, we evaluate our model’s effectiveness in esti-
mating the DSQ from GPS features by comparing its feature
set with those from the CAN-bus data detailed in Table I.
The input signals from these CAN-bus data are resampled
at 10 Hz to match the GPS data. In addition to the above
CAN-bus data, we compute and use the first derivative with
respect to time for the steering angle, forward acceleration,
lateral acceleration, and accelerator position and use them as
the velocity of steering angle, forward jerk, lateral jerk, and
change of the acceleration position are used as secondary data.
We also applied data segmentation and feature extraction to the
CAN-bus data. After GPS data cleaning, all feature sets use
the same driving data at arterial roads and intersections.

V. RESULTS AND DISCUSSION

We applied the KS test to all drivers’ statistical features
to confirm the importance of GPS data for DSQ estimation
(section V-A). Next, we investigate how the model with GPS
data can estimate the DSQ results to validate our method
and compare feature sets with GPS data and CAN-bus data
(section V-B). This study evaluates the estimation macro F1-
score by comparing the following two feature sets.
FS (GPS): a GPS feature set that is from all six primary and

secondary GPS data, which is our method.
FS (CAN-bus): a CAN-bus feature set that is from all 13

primary and secondary CAN-bus data.
Fig. 4 shows bar plots of the ratio of GPS data with features

highly related to the DSQ scores with p < 0.05 on the KS test.
Table III shows the classification result of each DSQ item of a
model with a GPS feature set and a CAN-bus feature set. The
bold values represent the highest macro F1-score among each
DSQ item in each road type with values greater than 0.5. We
compute an average macro F1-score from the highest macro
F1-score among each DSQ item from two road types within
each feature set.

A. Importance of GPS Data

From the results of the KS test shown in Fig. 4, some
features of all the GPS data were different between the
high and low groups, with statistically significant differences
in the arterial road data and intersection data when all the
DSQ items were considered. In particular, the ratio of the
speed with features was highest (0.275) on “importance of
automobile for self-expression” on arterial road data, while
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Fig. 4. Bar plots of the ratio of GPS data with features highly related to the DSQ scores with p < 0.05 on the Kolmogorov-Smirnov test. Blue (left) and
orange (right) bars represent arterial roads and intersections. Legend numbers in parentheses show total statistically significant features. long acc = longitudinal
acceleration, ang speed = angular speed, lat acc = lateral acceleration, long jerk = longitudinal jerk, lat jerk = lateral jerk.

the lateral acceleration with features was highest (0.600) on
“moodiness in driving” on intersection data. This correlation
between each DSQ item, which characterizes driving styles
from a psychological aspect, and the primary and secondary
GPS data on driving styles has significant implications for
understanding and predicting driver behavior. This result also
suggests that these important GPS features can be used to
classify each DSQ item into groups via ML models while
avoiding overfitting. Furthermore, 236 (2.61%) to 758 (8.39%)
features from 9036 features on the arterial road data and 5
(2.31%) to 14 (6.48%) features from 216 features on the
intersection data remained important GPS features for each
DSQ item. This test contributes to reducing computational
costs and improving cost-effectiveness.

B. Analysis of Classification Accuracy

From the classification result of each DSQ item of a model
with FS (GPS) shown in Table III, three on each road type and
five on two road types out of eight DSQ items were estimated,
with the highest macro F1-score greater than 0.5, which is
the random-assignment baseline. In particular, the macro F1-
score of “importance of automobile for self-expression” and
“moodiness in driving” were highest (0.625) on arterial road
data, whereas “confidence in driving skill” was highest (0.775)
on intersection data. Moreover, the model’s average macro
F1-score was greater than 0.5. These results indicate that the
majority of the DSQ items, which represent the psychological
driving style, can be adequately estimated from primary and
secondary GPS data on driving styles.

In contrast, a model with FS (CAN-bus) achieved the highest
macro F1-score greater than 0.5: six on arterial road data, three
on intersection data, and seven on two road types out of eight
DSQ items. The model’s average macro F1-score was higher
than the model with FS (GPS). These results indicate that the
difference in the average macro F1-score between FS (GPS)
and FS (CAN-bus) methods was close to 0.036. However, it
also indicates that the model with FS (GPS) was considerably

inferior to that with FS (CAN-bus) compared with the number
of items greater than 0.5.

In addition, the results reveal a large difference between the
macro F1-scores of the model with FS (GPS) and FS (CAN-
bus) on “methodical driving” on the arterial road data. There-
fore, we applied the KS test to all drivers’ FS (CAN-bus) and
found that forward acceleration (0.151), lateral acceleration
(0.123), and steering angle (0.114) presented high ratios. One
possible reason why the macro F1-scores for FS (GPS) and
FS (CAN-bus) differ significantly while the top three features
in the CAN-bus are of a similar data type to the generated
GPS data is that the generated GPS data, which represent the
driving style, are not exactly identical in behavior to the CAN-
bus data. Fig. III also shows that the model with FS (GPS) had
higher macro F1-scores than did the model with FS (CAN) for
some DSQ items, suggesting that the generated GPS data are
important for these specific DSQ items.

VI. CONCLUSIONS

In this paper, we present the results of our study on the
psychological driving style estimation approach using only
GPS sensor data and compare the models’ results with CAN-
bus data. The experimental results show differences in some
features of all the GPS data between the high and low groups
for each DSQ item on two road types via the KS test.
Additionally, the findings indicate that the model with a GPS
feature set can achieve a macro F1-score greater than 0.5 for
five out of eight DSQ items in the majority and the average
macro F1-score is 0.596 a difference of 0.036 from 0.632
for the model with a CAN-bus feature set. Our proposed
GPS-based recognition model has the potential to significantly
reduce the cost of developing personalized assistance systems,
as it does not require expensive sensor installations. This
study used GPS sensor data collected at approximately 10 Hz,
whereas smartphone GPS data are typically collected at 1 Hz.
To develop personalized DASs using smartphones alone in the
future, it is recommended that we investigate whether a model
with the data can estimate psychological driving style.
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TABLE III
CLASSIFICATION MACRO F1-SCORE FOR DSQ ITEMS.

DSQ item
FS (GPS) FS (CAN-bus)

Arterial Intersection Arterial Intersection
LR SVM RF LR SVM RF LR SVM RF LR SVM RF

Confidence in driving skill 0.300 0.258 0.395 0.517 0.436 0.775 0.361 0.361 0.410 0.303 0.436 0.343
Hesitation for driving 0.329 0.425 0.361 0.487 0.384 0.343 0.617 0.654 0.395 0.281 0.436 0.487
Impatience in driving 0.417 0.327 0.425 0.343 0.361 0.462 0.517 0.617 0.425 0.436 0.436 0.395

Methodical driving 0.324 0.258 0.395 0.549 0.662 0.343 0.617 0.744 0.410 0.329 0.357 0.410
Preparatory maneuvers at traffic signals 0.394 0.544 0.324 0.654 0.692 0.521 0.673 0.617 0.462 0.712 0.487 0.673

Importance of automobile for self-expression 0.487 0.555 0.625 0.487 0.303 0.357 0.635 0.456 0.549 0.300 0.452 0.281
Moodiness in driving 0.625 0.487 0.462 0.258 0.324 0.462 0.589 0.589 0.378 0.673 0.713 0.625

Anxiety about traffic accidents 0.238 0.361 0.439 0.378 0.361 0.378 0.410 0.425 0.425 0.546 0.378 0.439
Average 0.596 0.632

LR = Logistic Regression; SVM = Linear Support Vector Machine; RF = Random Forest.
The bold values represent the highest macro F1-score among each DSQ item on each road type with values greater than 0.5. The values in the last row

represent the average macro F1-score from the highest macro F1-score among each DSQ item from two road types within each feature set.
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