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Abstract—Deep learning networks are vulnerable to adver-
sarial examples, subtle, human-imperceptible modifications that
can deceive them. While most research has focused on digital
adversarial attacks, in several applications it is necessary that the
adversarial examples operate in the physical domain. Physical
domain adversarial examples are usually crafted by requiring
that the artefacts introduced by the attack survive the digital to
analog and analog to digital transformations involved by such
attacks. In this paper, we introduce an approach to generate
adversarial examples against a source printer attribution system
aiming at deciding which printer was used to print a given
image document. With respect to conventional physical domain
attacks, attacking a source printer attribution system poses
additional challenges since the subtle features the attribution
network relies on are introduced again during the Print and Scan
(P&S) process that follows the attack, thus possibly nullifying the
attack. We address this challenge by applying Expectation Over
Transformation including within the pool of transformations a
simulation of the P&S process relying on two GAN models trained
for this aim. Experimental results demonstrate that our approach
yields a significant increase of the attack success rates, surpassing
those of baseline models.

I. INTRODUCTION

Despite their effectiveness, Artificial Intelligence (AI) sys-
tems based on Deep Learning (DL) are vulnerable to var-
ious malicious attacks, including adversarial examples [1],
backdoor attacks [2], and inversion attacks [3]. Adversarial
examples involve subtle, human-imperceptible perturbations
leading to misclassifications or other incorrect behaviours.
Most research has focused on pixel-level digital adversarial
examples [4], assuming the attacker has full control over the
image’s digital representation. In contrast, physical adversarial
examples [5], [6] exploit variations in texture, shape, and light-
ing, processed through the system’s sensor inputs. Examples
include specific patterns applied to physical objects like stop
signs, causing misidentification by autonomous vehicle per-
ception systems. Despite potential risks, there is significantly
less research on generating and defending against physical
adversarial attacks compared to digital ones.

This paper focuses on attacks against image printed doc-
ument authentication, crucial for legal, governmental, and fi-
nancial sectors handling sensitive and confidential information.
Ensuring document integrity is vital to prevent forgery and
fraud, which can have significant consequences. The Federal
Trade Commission reported 2.6 million fraud cases, resulting
in $10.3 billion in losses in 2023 [7] due to piracy. Maintaining

printed document authenticity and confidentiality is essential
to protect sensitive information and uphold trust in official
processes. In the above framework, the goal of this paper is to
study the vulnerability of an image printer source attribution
classifier based on DL against physical adversarial examples.
The classifier is trained to identify a document’s originating
printer using a diverse set of documents from various printers.
We aim to generate adversarial examples that remain effec-
tive after reprinting by applying different attack algorithms.
Traditionally, adversarial examples in the physical domain are
created by adding perturbations directly to the digital images,
which are then transformed into a physical document or 3D
object and fed to the AI model, successfully misleading the
system. In our case, the attacked digital images are printed
again by the same printer and scanned back before being fed
to the classifier. The Print and Scan (P&S) process applied to
the attacked images, poses several challenges to the creation
of effective attacks. Firstly, the P&S process degrades the
perturbation introduced by the attack thus requiring a stronger
perturbation. Secondly, and most importantly, the features the
attribution network relies on are re-introduced again when the
attacked digital image is printed the second time, possibly
nullifying the effectiveness of the attack.

Following previous works on the generation of physical
adversarial examples, we use Expectation Over Transformation
(EOT) [8] to craft perturbations that survive the distortion
introduced passing from the physical to the digital domain.
As shown in Sect. V, classical EOT alone is not sufficient to
maintain the effectiveness of adversarial examples after P&S
due to the reintroduction of printing artefacts on top of the at-
tacked image. For this reason, we propose to incorporate a P&S
simulator within the EOT framework to generate an adversarial
attack that preemptively takes into account the subsequent
reprinting process. In particular, we used a Pix2Pix Generative
Adversarial Network (GAN) [9] and a CycleGAN [10] to
simulate the P&S transformation. We integrated EOT with
P&S into the Iterative Fast Gradient Sign Method (IFGSM)
and Carlini & Wagner (C&W) attacks, achieving a high Attack
Success Rate (ASR) even after reprinting.

Given the above, the main contributions of this work are:
1) We developed two P&S simulators utilizing Pix2Pix

GAN and CycleGAN image translation models. The
simulators are not only applicable to craft adversarial
source printer image attribution, but can be potentially



used in digital image forensics to enhance the robustness
of synthetic image detectors [11].

2) We integrated the P&S simulators as an additional trans-
formation step in the EOT attack.

3) We were able to generate robust adversarial examples
that withstand the reprinting process, successfully de-
ceiving the target source printer attribution classifier.

The paper is organized as follows: Sect. II reviews adver-
sarial attacks in digital and physical domains. Sect. III details
the P&S simulators’ development and performance. Sect. IV
focuses on the generation of robust adversarial examples. Sect.
V analyzes experimental results. Sect. VI summarizes our
findings and suggests directions for future work.

II. RELATED WORKS

Adversarial examples, first identified by Szegedy et al. [1],
demonstrate that minor perturbations can significantly alter
a network’s output while remaining nearly imperceptible to
humans. These examples often generalize across different
models, even those trained with different hyper-parameters or
architectures, sparking significant interest in DNNs. Current
research explores adversarial examples in both digital and
physical domains.

Digital Domain adversarial perturbations are directly ap-
plied to the network’s input constraining the lp-norm (e.g., l∞-
norm [4], l2-norm, and l0-norm [12]) of the perturbation to be
lower than a certain threshold, to maintain the imperceptibility
of the attack. Depending on the adversary’s knowledge, the
adversarial attacks can be categorized as either white-box or
black-box. In white-box attacks, the attacker has complete
knowledge of the model, allowing full use of the gradient to
craft the perturbations [4], [5], [12]. In a black-box attack, the
attacker can only query the target model and receive corre-
sponding outputs without access to its internal structure. In this
scenario, the attacker can either leverage the generalizability
of adversarial examples across different models or deduce the
model’s internal information through multiple queries.

Physical Domain attacks were pioneered by Kurakin et al.
[5], who introduced the first physical-domain attack by printing
digitally perturbed images, which were then photographed with
a smartphone and fed into a pre-trained Inception v3 classifier.
Their results indicated a decline in the effectiveness of the
attack after the images underwent printing and photography.
Sharif et al. [6] created adversarial eyeglass frames to deceive
facial recognition systems by incorporating a non-printability
score (NPS) and total variation (TV) loss in their optimization,
ensuring printer accuracy and smooth color transitions. [13]
used a similar TV loss to generate adversarial stickers for
hats to fool the ArcFace system. Lu et al. [14] noted that
attack effectiveness diminishes when images are viewed from
different angles and distances. To generate physical adversarial
examples that withstand the transformations involved when
going back and forth from the digital to the physical domain,
EOT was introduced in [8]. Eykholt et al. [15] refined EOT
with Robust Physical Perturbation (RP2), sampling synthetic

and physical transformations to create adversarial stop signs
using posters or stickers, though this requires printing and
photographing the original image multiple times. Jan et al. [16]
proposed D2P, a transformation using a conditional GAN [9],
[10] before EOT to simulate printing and photographing ef-
fects, but it faces feasibility issues due to the need for extensive
printing and photographing to build a training dataset. A work
that is somewhat similar to the present work is [17]. Even there
the detector relies on the features that are reintroduced after
rebroadcast hence requiring the design of a particular EOT
strategy. However, the rebroadcasting artefacts are different
than those introduced by P&S, hence the method proposed
in [17] cannot be applied in our case.

As matter of fact, all the attacks based on EOT include
natural geometric and colour transformations to generate robust
adversarial examples. As we will show later, however, this
is not enough when the target system is a printer source
attribution model. For this reason, we integrated the P&S
simulators into the EOT framework. In this way, we were
able to significantly improve the ASR, ensuring that the attack
remains effective even after reprinting.

III. PRINT AND SCAN SIMULATION

Printing and scanning an image involves converting the
digital images to physical copies and back to the digital
domain, introducing various distortions and artefacts. Printing
can cause color shifts, ink diffusion, and minor geometric
distortions due to the printer’s mechanical characteristics and
type of paper used. Scanning adds further distortions and
noise depending on the scanner’s resolution, color response,
and mechanical misalignments. These steps affect pixel values
and introduce artefacts specific to the printer and scanner,
along with minor geometric alterations due to imperfect paper
positioning within the scanner.

Given the time-consuming and costly nature of manually
creating large volumes of printed and scanned images, we
developed two P&S simulators to be directly included within
the EOT process, enabling vast generation of training images
without the expense and effort of physical P&S. Research
on simulating the P&S process by means of deep learning
is sparse. A significant contribution in this domain comes
from Ferrara et al. [18], who demonstrated that integrating
a simulated P&S transformation during training improves the
accuracy of face morphing attacks on printed and scanned face
images. Their model estimates the pixel distortions incurred
during printing and scanning, considering various critical pa-
rameters such as the responsivity of the acquisition device,
the sampling function characterizing the digitization process
of printed images, the point spread function of the printer
and scanner, noise levels, and colour transformations. How-
ever, the presence of device-dependent unknown parameters
complicates real-world adaptations, as calculating the point
spread functions of printers and scanners is challenging and
fine-tuning each parameter can be time-consuming, especially
across multiple devices. Mitkovski et al. [19] also utilized
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a Pix2Pix GAN to emulate the P&S process for biometric
applications.

To start with, and similarly to [19], we trained Pix2Pix GAN
[9] simulator. Training the Pix2Pix GAN, however, requires
pixel-wise alignment of digital and P&S images for effective
computation of the mean square error loss. To address this
problem, we employed image alignment techniques during
training. We also trained a CycleGAN P&S simulator, which
supports unpaired image-to-image translation. In fact, Cycle-
GAN, which does not necessitate paired images, thus greatly
simplifying the preparation of the dataset.

A. Architecture of the simulators

Pix2Pix and CycleGAN have been extensively used to
address various generative tasks. In our case, the objective of
the Pix2Pix generator is to translate the input images from
the digital to the P&S domain, while the discriminator is
asked to distinguish between real P&S and digital pairs and
their synthetic counterpart. The CycleGAN generators aim at
translating images from the digital to the P&S domain and vice
versa ensuring cyclic-consistency. With respect to classical
CycleGAN training, we did not to use the identity loss. In fact,
printing a printed and scanned image again should not result in
the identity operator, as the second P&S process would further
degrade the image quality.

B. Dataset

To train the simulators, we used a dataset derived from
the second version of the VIPPrint dataset [20]. This dataset
consists of human face images printed with various modern
color laser printers, each operating at different resolutions.
Acquisition was performed by using a TaskAlfa 3551 multi-
functional scanner at 600×600 dpi resolution, and the images
were saved using lossless compression. The size of the digital
images is 1024×1024×3, while P&S images are approxi-
mately 2036×2038×3, with slight variations of 5 to 10 pixels
in both dimensions introduced during scanning. To align the
resolutions of digital and P&S images, the digital images
were upsampled to match the P&S image resolution. Our
experiments focused on a subset of P&S images printed by
one of the 12 printers in the VIPPrint dataset, specifically a
Kyocera P5021 CDN Color Laser printer. We used a subset
of 200 printed and scanned images from this printer for our
experiments. To match the input size of the Pix2Pix and Cy-
cleGAN networks, we trained the networks on image patches
extracted from 100 printed and scanned images along with
their corresponding digital images. Patches are 256×256×3 in
size and were extracted without pixel overlap. For Pix2Pix, we
aligned the digital and printed and scanned patches using [21];
if alignment was challenging or significant pixel differences
were detected, the corresponding patch was skipped. This
approach yielded 4678 aligned digital and P&S patches. In
contrast, CycleGAN training utilized unaligned digital and
P&S patches, leveraging the ability of CycleGAN’s to handle
unpaired image data. In total, 4914 digital and P&S patches
were used to train the CycleGAN simulator.

Fig. 1. Examples of digital and simulated P&S images with corresponding
ground truth: the first column shows the digital image input; the second
and third columns display P&S patches simulated by Pix2Pix GAN and
CycleGAN, respectively; the last column shows the ground truth P&S patches.

C. Training

The Pix2Pix GAN simulator was trained for 800 epochs
using the Adam optimizer with parameters β1 = 0.5, β2 =
0.999, and a learning rate of 1 × 10−4. The network utilized
64 filters and a Leaky ReLU activation function with a
slope of 0.2, while the batch size was restricted to 1. For
training CycleGAN, we utilized the same hyperparameters
of the Pix2Pix GAN simulator over 600 epochs. Both the
GAN adversarial loss and cyclic consistency loss weights
were set to 10. After training, we assessed the performance
of both simulators by inputting original digital patches. To
introduce variability, we added Gaussian noise with zero mean
and variance of 0.0625 to the digital images before feeding
them to the simulator. This ensures that multiple inputs of the
same digital image yield slightly different simulated outputs,
mimicking real-world variations when an image undergoes
printing and scanning multiple times.

We evaluated the quality of the simulated images both
visually (Fig. 1) and quantitatively using metrics such as
the Structural Similarity Index (SSIM) and Fréchet Inception
Distance (FID) (Table I). The SSIM scores are 0.84 for Pix2Pix
GAN and 0.87 for CycleGAN, while the FID scores are 47 for
Pix2Pix GAN and 45 for CycleGAN. As shown in Fig. 1, the
images generated by the P&S simulators closely resemble the
corresponding ground-truth images, demonstrating effective
learning of the distortions inherent in the P&S process.

TABLE I
SSIM AND FID BETWEEN SIMULATED AND REAL P&S IMAGES.

P&S Simulator SSIM Score ↑ FID Score ↓
Pix2Pix GAN 0.84 47
CycleGAN 0.87 45

IV. GENERATION OF PHYSICAL ADVERSARIAL EXAMPLES

A. Threat Model

We consider an attack aiming at altering an image printed
by a specific printer P, in such a way that the printer source
attribution model can no longer identify P as the source printer
(untargeted attack) after the image is reprinted by P . The
challenge is to ensure the attack’s effectiveness even after
the attacked image undergoes reprinting and scanning. The
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Fig. 2. Attack pipeline for the generation of robust adversarial examples.

attacker has white-box access to the source attribution model,
including its weights and architecture This allows the attacker
to optimize and evaluate the adversarial examples in the digital
domain before executing the physical-world attack by printing,
scanning, and strategically placing the attacked images.

B. Targeted Model

The printer source attribution system targeted by our at-
tack is the one described in [22]. This system, trained on
the VIPPrint dataset [20], analyzes the 10 highest-energy
224×224×3 patches of the image and uses a majority voting
decision for classification. Preliminary experiments in [22]
showed that a basic reprinting black-box attack can deceive the
original classifier. To enhance resilience against such attacks,
the authors fine-tuned the model using a dataset of reprinted
images, resulting in a more robust source attribution model,
which is the focus of our attack. Since the classifier operates
on patches, the adversarial attacks are applied to 224×224×3
image patches. However, because the attack may slightly alter
the energy of the patches, after the attack the classifier could
potentially analyze different patches. Therefore, we decided to
to attack all patches in the image. In this way we also prevent
the introduction of visible discontinuities at patch borders.
The success of the attack hinges on inducing sufficient patch
misclassifications to misclassify the true printer as the most
voted option. Our target is specifically the Kyocera-ecosys
P5021cdn laser printer, identified as class #12 in the attribution
system’s multiclass classification.

C. Attack Pipeline

The attack pipeline (Fig. 2) begins with printing a digital im-
age and applying an adversarial attack in the digital domain. To
maintain the effectiveness of the adversarial perturbation after
printing and scanning, we used EOT with P&S simulation.
The adversarial digital image is then physically printed with
the same printer. Finally, the source attribution model scans
and analyzes the printed image to identify its origin.

1) Digital Domain Attack: Initially, we assessed the effec-
tiveness of digital domain attacks (without EOT) in inducing
a misclassifications when the attacked image is subsequently
printed and scanned. Adversarial examples were generated
using a non-targeted version of I-FGSM [5] and C&W attack

[12]. For I-FGSM, we set ε = 0.03, with a step size of 0.01
over 100 iterations. Similarly, for the C&W attack, we let
ε = 0.1, with a binary search step size of 9 and a learning rate
of 0.01 across 1000 iterations. These hyperparameters were
selected to ensure effective attack coverage across most of the
patches in the P&S image.

2) Physical Domain Attack: To create robust adversarial
examples in the physical world, we integrated the I-FGSM
and C&W attacks into an EOT framework, which effectively
addresses domain shifts between digital and physical domains.
EOT involves defining a pool of transformations T to simulate
these shifts. The transformations used in our EOT attack are
detailed in Table II, including their parameters, essential for
replicating practical domain shifts. Additionally, we incorpo-
rated the Pix2Pix and CycleGAN P&S simulators within the
transformation set. Results were averaged over 10 transformed
samples to assess attack effectiveness. Through extensive
experiments, we identified an optimal combination of trans-
formations T (Table II) that consistently produce successful
adversarial examples. Our setup includes rotation (2.0 to 10.0
degrees), zoom blur (factors between 1.05 and 1.10), and pixel
shifts (5 pixels in all directions) with an inclusion probability
of 100%. For color transformations, brightness deltas (10 to
40) and a fixed contrast factor of 0.3 are applied with 50%
probability. Additionally, either CycleGAN or Pix2Pix GAN
simulators are chosen with a probability of 50% to simulate
P&S effects.

The attack algorithms within the EOT framework were
configured with the following hyperparameters: for I-FGSM,
ε = 0.15, a step size of 0.03, and 500 iterations were used; for
C&W, we employed ε = 0.15, 9 binary search steps, a learning
rate of 0.01, and 1000 iterations. When we incorporated the
P&S simulators into EOT, I-FGSM utilized ε = 0.4, a step size
of 0.07, and 500 iterations, while for C&W we used ε = 0.4, 9
binary search steps, a learning rate of 0.01, and 1000 iterations.

TABLE II
SET OF TRANSFORMATIONS USED IN THE EOT ATTACK.

Transformations Parameter Values Probability
Brightness brightness delta [10, 40] 50%
Contrast contrast factor 0.3 50%
Rotation rotation angle [2◦, 10◦] 100%
Zoom zoom range [1.05, 1.10] 100%
Shift of Pixels # pixels (all directions) 5 100%
Pix2Pix P&S
Simulator

- - 50%

CycleGAN P&S
Simulator

- - 50%

V. EXPERIMENTAL RESULTS

To demonstrate the robustness of the hardened source attri-
bution classifier against adversarial examples, we run exper-
iments in both the digital and physical domains. Our study
involved benchmarking various white-box attacks, including
I-FGSM and C&W, both with and without EOT, and incorpo-
rating P&S simulators within the EOT transformations. These
experiments were conducted on a test set of 20 documents,
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(a) First P&S image (b) I-FGSM (c) I-FGSM(EOT) (d) I-FGSM(EOT+PS) (d) C&W (d) C&W(EOT) (d) C&W(EOT+PS)

Fig. 3. Example of attacked images. From left to right we show the original P&S image and the generated adversarial examples (reprinting and scanning)
using standard I-FGSM and C&W adversarial attacks, EOT with natural transformations, and EOT including P&S simulation.

with each document segmented into 81 patches, totalling 1620
attacked patches. To measure the strength of the perturbation
introduced by the attacks, we computed the Peak Signal-
to-Noise Ratio (PSNR) between the original and attacked
patches, before and after the reprinting and rescanning process.
PSNR calculations were focused only on successfully attacked
patches. Additionally, we evaluated the ASR across all patches
in the images and on the top 10 highest energy patches, which
are generally more challenging to attack. After reprinting, the
final classification is determined through majority voting on
the results obtained from the top 10 highest energy patches of
each document. To assess the overall robustness of the system,
we also computed the ASR after the majority voting, where
the printer with the largest number of votes among the top
energy patches is selected.
The results of our experiments are reported in Table III.
Upon analysis of the first column of Table III, we see that
all attacks are very effective when they are applied in the
digital domain, achieving nearly 100% ASR. Regarding PSNR,
expectedly the attacks incorporating EOT, particularly those
using P&S simulation, exhibit lower values. The third column
of the table, reports the effectiveness of the attacks in the
physical domain considering the ASR obtained on all patches
after reprinting. For standard I-FGSM and C&W the ASR
decreases dramatically, while the application of EOT with
natural transformations limits the ASR drop. Including the
P&S simulators in the EOT transformations further improves
the ASR to 80.49% for C&W and 87.83% for I-FGSM,
which is a significant advantage with respect to EOT with
natural transformations. The main advantage of including P&S
simulation within EOT comes out when we limit the analysis
to the 10-highest energy block of each image. In this case, the
ASR with natural EOT is only 33.5% for I-FGSM and 28%
for C&W, while EOT with P&S simulation allows to attack
69% and 56.5% of the patches (in order for the attack to be
successful it is necessary - though not sufficient - that at least
50% of the blocks are attacked. In the last column of the table,
we report the ASR after majority voting on the 10-highest
energy blocks, which is crucial for assessing the overall attack
effectiveness on the entire image rather than on individual
blocks. We observe that the ASR after majority voting drops

to negligible values for standard I-FGSM and C&W attacks
and improves only slightly with the addition of EOT with
natural transformations 1. However, when the P&S simulator
is added to EOT, the ASR significantly increases for both I-
FGSM and C&W attacks. Specifically, the ASR for I-FGSM
rises from 25% to 70%, and from 20% to 65% for C&W.
These results highlight the effectiveness of incorporating the
P&S simulator, given the complexity of creating adversarial
examples that survive the reprinting process. Our experiments
also suggest that patches with dark backgrounds tend to
reintroduce stronger artefacts upon reprinting, thus requiring
an excessive distortion.

In Fig. 3, we show some adversarial examples after reprint-
ing, using various attacks. The images shown include the initial
P&S image (the attack target), adversarial examples produced
by standard attacks, EOT attacks with natural transformations,
and EOT attacks incorporating P&S simulations. Comparing
the initial P&S images to the reprinted adversarial examples
generated by standard I-FGSM or C&W attacks we see that
reprinting weakens the perturbation. The examples produced
by I-FGSM(EOT+PS) and CW(EOT+PS) demonstrate the im-
portance of the P&S simulation to in creating robust adversar-
ial examples that withstand reprinting.

VI. CONCLUDING REMARKS

In our research we addressed the challenges associated to
the generation of robust adversarial examples against a source
printer attribution system. We introduced a novel attack that
incorporates P&S simulations within the EOT framework.
Using Pix2Pix GAN and CycleGAN models, we developed
two simulators that accurately replicate the P&S transforma-
tions. Integrating these simulators into the EOT significantly
increased the ASR, demonstrating the method’s effectiveness
in producing adversarial examples that survive reprinting. Our
work underscores the importance of physical domain adversar-
ial attacks in AI security research and provides a foundation
for future efforts to counteract such threats.

We plan to expand our simulators to various image process-
ing tasks and diverse environmental conditions. Additionally,

1These results indirectly support the choice made in [22] to base the
classification only on the highest energy patches.
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TABLE III
EFFECTIVENESS OF VARIOUS ATTACKS IN BOTH THE DIGITAL AND

PHYSICAL DOMAIN. ASR’S ARE AVERAGED ACROSS ALL PATCHES OF THE
IMAGES, ON THE TOP 10 HIGHEST ENERGY PATCHES OF EACH IMAGE AND

AFTER MAJORITY VOTING ON THE 10 HIGHEST ENERGY PATCHES.

Attack
Method

ASR
Digital

PSNR
(dB)

ASR
Printed
All
Patches

ASR
Printed
Top10
Patches

PSNR
(dB)

ASR
Printed
Majority
Voting

I-FGSM 100% 36.28 26.72% 15.5% 28.89 10%
I-FGSM
(EOT)

96.41% 20.55 77.16% 33.5% 17.25 25%

I-FGSM
(EOT+P&S)

100% 13.02 87.83% 69% 11.89 70%

CW 100% 34.25 21.48% 14% 25.53 10%
CW(EOT) 97.16% 19.86 63.70% 28% 16.96 20%
CW
(EOT+P&S)

100% 12.28 80.49% 56.5% 11.18 65%

we aim to develop advanced P&S simulators using diffusion
models for enhanced realism and accuracy. Finally we plan to
apply the proposed attack to printer attribution systems based
on vision transformers.
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