
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

An Annealing-Inspired Gradient-Descent Based

Suboptimal Solver for Combinatorial Problems
Shu-Ping Chang1, Cheng-Che Lee2, Hsin-Jung Lee2, Chieh-Hsiung Kuan1,2

Jason Gemsun Young3, Chia-Yu Yao4, and Jian-Jiun Ding*

1Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University
2Graduate Institute of Electronics Engineering, National Taiwan University

3Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute
4Department of Electrical Engineering, National Taiwan University of Science and Technology

*Graduate Institute of Communication Engineering, National Taiwan University

E-mail: jjding@ntu.edu.tw Tel: +886-2-33669652

Abstract—Combinatorial optimization problems, such as IC

layout and industrial scheduling, have significant industrial

applications but are challenging due to exponential time

complexity. In this work, we propose a novel annealing-inspired

heuristic algorithm that treats combinatorial problems as

function optimization problems using nonlinear programming.

The proposed gradient-descent-based solver significantly

improves the convergence rate and includes a new regularization

constraint to escape local minima by increasing convexity.

Applied to the Traveling Salesman Problem (TSP) with various

city counts, the proposed algorithm demonstrates polynomial time

complexity. It much reduces the complexity from (n1)!/2 to n4

and has a marked improvement in computation efficiency.

Notably, for a 50-city TSP, the relative error is just around 5%,

indicating the accuracy and efficiency of the proposed algorithm

in solving high-dimensional instances.

I. INTRODUCTION

In nature, many processes seek stable states, such as the

evolution and changes in ecological environments or

macroscopic phenomena resulting from the balance of

microphysical laws. These processes can be considered natural

optimization mechanisms. Over the past 50 years, various

global optimization algorithms have been developed to

simulate these processes, including Simulated Annealing,

Neural Networks, and Genetic Algorithms [1]. Combinatorial

optimization problems are crucial due to their wide range of

applications, such as IC layout, industrial scheduling, and

isomer analysis. The Traveling Salesman Problem (TSP) is a

prominent example frequently studied in mathematics and

computer science. Traditional methods like dynamic

programming and branch-and-bound aim to solve these

problems but often require significant computational resources.

However, many combinatorial optimization problems are

NP-hard or NP-complete, making exhaustive search

impractical within a reasonable time frame. The exponential

growth in computational complexity remains a significant

challenge, especially for high-dimensional instances.

In this study, we develop an annealing-inspired algorithm to

address the exponential growth in computational complexity in

combinatorial optimization problems. Our method treats these

problems as function optimization tasks using nonlinear

programming, with the TSP as a key example. Inspired by

Finnila's Quantum Annealing in 1994 [2], which utilizes

quantum tunneling, we propose leveraging pathological system

characteristics to achieve states close to multiple solutions.

This approach, followed by continuous unconstrained

optimization, transforms the problem into a universal

combinatorial solver, applicable to TSP, IC layout, industrial

scheduling, and heterogeneous structure analysis.

Our approach employs gradient descent to solve ill-

conditioned systems, freely choosing methods like the

conjugate gradient to improve convergence speed. Inspired by

the framework in [3], we introduce a regularization term

similar to thermal annealing, enabling the solver to escape local

minima by gradually increasing cost function convexity. We

validate the feasibility of our algorithm through TSP of

different dimensions, a standard test model in mathematics and

computer science. This paper emphasizes the algorithm's

uniqueness and generality, presenting it as an effective strategy

for improving combinatorial optimization solutions.

II. BASIC PRINCIPLES OF OUR APPROACH

The Traveling Salesman Problem (TSP) can be transformed

into a quadratic polynomial problem through nonlinear

programming, representing it as a binary variable optimization

problem [4]. Let TSP be defined as n cities in the set 𝑁 ≡
ሼ1,2, … 𝑛ሽ. Without loss of generality, let the nth city be both

the starting point and the endpoint, referred to as the

"Hometown," since the degree of freedom for an n-city TSP is

effectively only 𝑛 െ 1.

A. Using Route Length as Cost Function in Unconstrained

Optimization

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

After excluding the hometown city, the remaining number

of cities is denoted as 𝑚 ൌ 𝑛 െ 1, forming a city set 𝐶 ≡
 ሼ1,2, . . . 𝑚ሽ , and 𝑇 ≡ ሼ1,2, . . . 𝑚ሽ as the ordinal set

representing travel time. These correspond to the order of

visiting cities in the set 𝐶. Through these two sets, we generate

a set of binary variables 𝑥௧௝ ሺ𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶ሻ, defined as follows:

𝑥௧௜ ≡ ൜
1, if city 𝑖 is visited at time order 𝑡
0, otherwise

 , 1 ൑ 𝑡, 𝑖 ൑ 𝑚

 (1)

𝑥௧௜ has 𝑘 variables, where 𝑘 ൌ 𝑚ଶ, capable of expressing

one possible path among all permutations, representing the

city 𝑖 at time 𝑡. Finally, all variables are placed into a 𝑘 ൈ 1

matrix, 𝐱 ∈ ሼ0,1ሽ௞ . The optimized cost function 𝐽ଵ ሺ𝐱ሻ can

then be expressed as:

 x ≡ ሾ𝑥ଵଵ 𝑥ଵଶ … 𝑥ଵ௠ … 𝑥௠ଵ 𝑥௠ଶ … 𝑥௠௠ሿ் (2)

 𝐽ଵሺxሻ ≡ ∑ ∑ ∑ 𝑑௜௝𝑥௧௜𝑥ሺ௧ାଵሻ௝௝∈஼∖ሼ௜ሽ௜∈஼௧∈்∖ሼ௠ሽ ൅

 ∑ ∑ 𝑐௜𝑥௧௜௜∈஼௧∈ሼଵ,௠ሽ (3)

The set of paths between two cities is denoted as 𝐸 ൌ 𝐶ଶ.

Among them, 𝑑௜௝ ሺሺ𝑖, 𝑗ሻ ∈ 𝐸ሻ is the distance between city i

and city j, and 𝑐௜ ሺ𝑖 ∈ 𝐶ሻ is the distance from city i to the

hometown. This way, the optimized cost function can fully

express the distance of one possible path.

Since the number of distances 𝑑௜௝ between cities is

𝑚ሺ𝑚 െ 1ሻ/2 , and each route contains n distances between

cities, the average route length 𝐿௔௩௚ is approximately:

 𝐿avg ≡
ଶ௡

௠ሺ௠ିଵሻ
൫∑ ∑ 𝑑௜௝௝∈஼ሼ௜ሽ௜∈஼ ൅ ∑ 𝑐௜௜∈஼ ൯ (4)

The new cost function 𝐽ଶሺxሻ is the normalized 𝐽ଵሺxሻ:

 𝐽ଶሺ𝐱ሻ ≡ 𝐽ଵሺ𝐱ሻ/𝐿avg (5)

B. Using Regularization to Incorporating Constraints

We utilize regularization to maintain our problem as

unconstrained optimization by incorporating regularization

terms to incorporate constraints. In Fig. 1, each row is

associated with the condition that only one city is visited at a

time, meaning that only one binary variable in each row equals

1, and the others are 0. Similarly, each column is associated

with the condition that each city is visited only once, meaning

that only one binary variable in each column equals 1, and the

others are 0. Therefore, we first transform the TSP into a

constrained optimization problem:

Fig. 1. Traveling Salesman Problem (n = 5) variable presentation form. The

arrangement of the remaining cities is expressed using an 𝑛 ൈ 𝑛 matrix, where

columns represent the cities and rows represent different time sequences.

Problem TSP:

Minimize

 𝐽୘ୗ୔ሺ𝐱ሻ ≡
ଵ

௅avg
൫∑ ∑ ∑ 𝑑௜௝𝑥௧௜𝑥ሺ௧ାଵሻ௝௝∈஼∖ሼ௜ሽ௜∈஼௧∈்∖ሼ௠ሽ ൅

 ∑ ∑ 𝑐௜𝑥௧௜௜∈஼௧∈ሼଵ,௠ሽ ൯ (6)

subject to

 ∑ 𝑥௧௝௝∈஼ ൌ 1 , 𝑡 ∈ 𝑇, ∑ 𝑥௧௝ ൌ 1௧∈் , 𝑗 ∈ 𝐶,

 𝑥௧௝ ∈ ሼ0,1ሽ , 𝑡 ∈ 𝑇 , 𝑗 ∈ 𝐶. (7)

The above two types of constraints are transformed into the

following minimization regularization terms, which require the

sum of each row and each column to be close to 1. Therefore,

the number of added regularization terms will be the sum of the

number of rows and columns, 2m. However, currently, it is not

required for all solution elements to be binary values; solutions

may be floating-point numbers between 0 and 1:

 min
𝐱

൫∑ 𝑥௧௝ െ 1௝∈஼ ൯
ଶ
, min

𝐱
൫∑ 𝑥௧௝ െ 1௧∈் ൯

ଶ
. (8)

According to the regularization method, by adding the above

regularization terms, a new cost function 𝐽ଷሺ𝐱ሻ is generated:

 𝐽ଷሺ𝐱ሻ ≡ 𝐽ଶሺ𝐱ሻ ൅

 𝜆ଵ ቂ∑ ൫∑ 𝑥௧௝ െ 1௝∈஼ ൯
ଶ

௧∈் ൅ ∑ ൫∑ 𝑥௧௝ െ 1௧∈் ൯
ଶ

௝∈஼ ቃ

 (9)

Since 𝐽ଷሺ𝐱ሻ is a quadratic polynomial function with respect

to 𝐱, we can transform 𝐽ଷሺ𝐱ሻ into matrix form:

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Fig. 2. The normalized regularization term 𝑔ఙሺ𝑥ሻ for several σ.

 𝐽ଷሺ𝐱ሻ ൌ 𝐱்𝐏𝐱 ൅ 𝐪்𝐱 ൅ 𝑟 (10)

where 𝐏 is a symmetric 𝑛 ൈ 𝑛 matrix with each element

expressed in 𝑑௜௝ and 𝜆ଵ, 𝐪 is an 𝑛 ൈ 1 column matrix with

each element expressed in 𝜆ଵ , and 𝑟 is a scalar / constant

expressed in 𝜆ଵ.

C. Formally Treating Binary-valued Variables as

Continuous Variables

Heading toward possible adoption of the gradient-descent

(GD) based methods, such as the Newton-Conjugate-Gradient

method, for searching the minimum, we formally treat the

binary-valued variables 𝐱 as continuous variables such that

𝐱 ∈ ℝ௡. Since the cost function 𝐽ଷሺ𝐱ሻ is quadratic in form,

𝐽ଷሺ𝐱ሻ is infinitely differentiable, which guarantees the

existence of the gradient matrix and Hessian matrix, that are

usually required by GD based methods.

In the continuous domain, an 𝐱 ∈ ℝ௡ does not necessarily

represent a feasible route. Only a binary-valued 𝐱 ∈ ሼ0,1ሽ௡

can represent a feasible route. As ሼ0,1ሽ௡ is a very sparse

subset of ℝ௡, we are interested in heuristics that tend to allow

many candidates 𝐱 in the continuous domain ℝ௡, so that at

later stages we can narrow down to those candidates close

enough to the binary-valued domain ሼ0,1ሽ௡. One such “many-

candidate” heuristic for picking 𝜆ଵ is described in the

following subsection.

D. Picking λ1 by Heuristics Favoring Near-Singular Systems

The gradient of the cost function 𝐽ଷሺ𝐱ሻ is

 ∇𝐽ଷሺ𝐱ሻ ൌ 2𝐏𝐱 ൅ 𝐪. (11)

A necessary condition for the minimum of 𝐽ଷሺ𝐱ሻ to happen at

𝐱 ൌ 𝐱ො is “zero gradient”

 𝐏𝐱ො ൌ െ𝐪/𝟐. (12)

Since the above is a linear equation, if 𝐏 is near-singular /

ill-conditioned, many 𝐱ො exist such that 𝐽ଷሺ𝐱ොሻ falls within an

𝜖-neighborhood of a local minimum of 𝐽ଷሺ𝐱ሻ. Because 𝐏 is

expressed in terms of 𝜂ଵ, the following “many-candidate”

heuristic (as mentioned in the last subsection) is devised.

Heuristic: Picking 𝜂ଵ such that 𝐏 is near-singular / ill-

conditioned, or equivalently, the condition number of 𝐏 is

large.

E. Cost Functions for Square of Variables

The cost function J3(x) includes the distance form of

𝑑௜௝𝑥௧௜𝑥ሺ௧ାଵሻ௝, which can turn negative when the variables are

in the continuous domain 𝐱 ∈ ℝ௡. We simply substitute each

variable by its square to arrive at 𝑑௜௝𝑥௧௜
ଶ 𝑥ሺ௧ାଵሻ௝

ଶ to guarantee

positive values. Let

 𝐱𝟐 ≡ ሾ𝑥ଵଵ
ଶ 𝑥ଵଶ

ଶ … 𝑥ଵ௖
ଶ … 𝑥௖ଵ

ଶ 𝑥௖ଶ
ଶ … 𝑥௖௖

ଶ ሿ். (13)

The new cost function J4(x) is chosen as

 𝐽ସሺ𝐱ሻ ≡ 𝐽ଷ൫𝐱𝟐൯ ൌ 𝐱𝟐்
𝐏𝐱𝟐 ൅ 𝐪்𝐱𝟐 ൅ 𝑟 (14)

F. Using Regularization to Incorporate Constraints

Favoring Binary Values

The general framework in reference [1] has inspired the

following regularization term f(x) for the constraints favoring

binary values {0, 1}.

 𝑓ఙሺ𝑥ሻ ≡ 1 െ exp ቀെ𝑥2

2𝜎2ቁ െ exp ቂെሺ𝑥െ1ሻ2

2𝜎2 ቃ, (15)

 lim
ఙ→଴

 𝑓ఙሺ𝑥ሻ ൌ ൜
0, if 𝑥 ൌ 0 or 1
1, otherwise

. (16)

Note that f(x) is symmetric about 𝑥 ൌ 0.5, and thus 𝑓ሺ0ሻ ൌ
𝑓ሺ1ሻ. For larger 𝜎, 𝑓ఙሺ𝑥ሻ has one minimum at 𝑥 ൌ 0.5. For

smaller 𝜎, 𝑓ఙሺ𝑥ሻ has two minima at 𝑥 ൌ 0 and 𝑥 ൌ 1.
However, the range of f(x) varies with different values of 𝜎.

When 𝜎 increases to the point where there is only one

minimum, the minimum value of the function can be far

smaller than 0, as shown in Fig. 2. To rescale the range of f(x)

for all possible 𝜎 values to lie between 0 and 1, we normalize

the regularization term function f(x). The following is the

formula for normalizing the function:

 𝑓௡௢௥௠ ൌ ሺ𝑓 െ 𝑓௠௜௡ሻ/ሺ𝑓௠௔௫ െ 𝑓௠௜௡ሻ (17)

where 𝑓௠௔௫ remains unchanged with respect to 𝜎, fixed at 1,

and 𝑓௠௜௡ varies. Therefore, to define the scaling scalar 𝑠ఙ for

the normalized function 𝑓ఙ
∗ሺ𝑥ሻ, we generate the normalized

function. The function plot is depicted in Fig. 2, where the

curve represents the results for several different 𝜎 values.

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Fig. 3. Visualization of Annealing-Inspired method.

 𝑠ఙ ≡ 1 െ min
௫∈ℝ

𝑓ఙሺ𝑥ሻ

 ൌ & ൜
1 െ 𝑓ఙሺ0ሻ , 𝑓ఙሺ0.5ሻ ൐ 𝑓ఙሺ0ሻ
1 െ 𝑓ఙሺ0.5ሻ, otherwise

, (18)

 𝑓ఙ
∗ሺ𝑥ሻ ≡ ሺ𝑓ఙሺ𝑥ሻ ൅ 𝑠ఙ െ 1ሻ/𝑠ఙ. (19)

G. Annealing-Inspired: Slowly Decreasing σ in Attempts to

Escape Local Minima

The cost function 𝐽ఙሺ𝐱ሻ may have many local minima. In

Fig. 3, the regularization term 𝑔ఙሺ𝑥ሻ is more like a line for

larger 𝜎. It is flatter, has lower convexity, less favors binary

{0, 1}, and renders fewer local minima for 𝐽ఙሺ𝐱ሻ. For smaller

𝜎, 𝑔ఙሺ𝑥ሻ has larger convexity, much favors binary ሼ0,1ሽ, and

renders more local minima for 𝐽ఙሺ𝐱ሻ. In attempts to escape

local minima, 𝜎 is slowly decreased in each optimization

iteration, in which the cost function 𝐽ఙሺ𝐱ሻ is optimized using

a GD based method.

III. EXPERIMENTAL AND RESULTS

This chapter is divided into four sections. The first section

illustrates the differences between the algorithm proposed in

this paper and existing algorithms. The second section tests the

algorithm model with parameter adjustments for the Traveling

Salesman Problem (TSP) across various dimensions. The third

section presents the results and comparisons of finding the

shortest path in a randomly distributed city model. The final

section uses the renowned TSPLIB dataset as the benchmark to

showcase the algorithm’s results and advantages over other

algorithms [5]. The algorithm is implemented in Python 3.11

without GPU acceleration. The hardware specifications are an

Intel Core i5-7200U with 12GB RAM.

A. Evaluation of Time Complexity

The Traveling Salesman Problem is an NP-hard problem,

meaning it cannot be solved in polynomial time. Its time

complexity increases at least exponentially. For instance, for

the Traveling Salesman Problem with n cities, there are

 ሺ𝑛 െ 1ሻ!/2 possible routes. Finding the shortest route among

them requires a time complexity of 𝑂ሺ𝑛!ሻ, known as factorial

time. Algorithms of this nature are often referred to as

exhaustive or brute-force methods. As the input n increases, the

execution time increases dramatically. Just for 11 cities, there

are 1,814,400 routes. While cases up to 12 cities can be handled

conventionally, 17 cities require the most powerful

computational resources available today. However, problems

involving 21 cities are nearly impossible to solve.

To mitigate the excessively large computational complexity,

dynamic programming can be employed. This approach breaks

down the entire Traveling Salesman Problem into several

subproblems, decomposing the entire route into multiple

subpaths. Trading space complexity for reduced time

complexity is highly effective, reducing the time complexity to

𝑂ሺ𝑛ଶ2௡ሻ . We can observe that beyond 10 cities, dynamic

programming's complexity becomes lower than brute-force

methods. By the time 20 cities are reached, there is an eight-

order-of-magnitude difference between the two approaches. As

shown in Fig. 4, this difference accelerates as the

dimensionality increases. However, dynamic programming

still exhibits exponential complexity and cannot achieve the

polynomial time complexity required by modern integrated

circuit computers.

The algorithm we developed is based on the matrix 𝑃 for

optimizing computations, with a dimensionality of 𝑛ସ . The

theoretical time complexity is 𝑂ሺ𝑛ସሻ. However, during the

search for the minimum value, we utilize the Newton conjugate

gradient method. Rather than delving into the details of

algorithm analysis, we chose a more efficient approach by the

program execution time calculations to assess our algorithm's

time complexity. This way systematically analyzed the

potential factors affecting time complexity and observed the

impact as the number of cities increases.

In Fig. 4, we observed that our ACUO algorithm's

computation time grows with the dimensionality, roughly

matching O(n4). We also analyzed the computation times of

two exact solving algorithms, exhaustive search (the brute-

force method), and dynamic programming, using results from

the package of Python-tsp. They exhibit a trend like the

estimated time complexity. Hence, these results can serve as

the evaluation standard for our algorithm's time complexity.

Despite not being outstanding in terms of computational speed,

the time complexity remains within polynomial time

complexity. Thus, the problem with high city number can find

a solution in finite time for our algorithm.

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Fig. 4. Comparison of the computation time (red lines) and the complexity (black line) of the (Left) in Dynamic Programming, (Middle) Brute-force, and (Right)

proposed ACUO methods. One can see that the proposed algorithm can much reduce the computation time and complexity.

TABLE I. Comparison of ACUO Results with Standard Solutions for

Randomly Distributed Cities.

N ACCU(%)
Brute
Force

ACUO DIFF DIFF%

5 94 0.8169 0.8186 0.00171 0.2093

6 89 0.7451 0.7465 0.00144 0.1935

7 87 0.6816 0.6833 0.00168 0.2458

8 83 0.6359 0.6381 0.00226 0.3549

9 78 0.5879 0.5910 0.00307 0.5225

10 77 0.5531 0.5562 0.00309 0.5579

11 70 0.5251 0.5285 0.00344 0.6558

12 55 0.5027 0.5100 0.00732 1.4553

13 42 0.4806 0.4902 0.00957 1.9918

14 36 0.4561 0.4676 0.01154 2.5306

15 37 0.4369 0.4511 0.01414 3.2366

B. Results of ACUO for Random Cities Distribution

We extensively tested the optimization algorithm using

randomly distributed city data, comparing the optimized paths

obtained by our algorithm with the exact solutions obtained by

dynamic programming. We examined the accuracy and error of

the ACUO in low dimensions. We tested city numbers ranging

from n = 5 to n = 15 in various scenarios, generating 100 sets

of test data for each scenario using random distributions. The

parameters were selected based on the optimal combinations

obtained in the previous section. The results are presented in

Table I and Fig. 5.

TABLE II. Optimization path length comparison using the TSPLIB data set.

Dataset n ACUO SA MIN ERR (%)

gr24 24 1340 1350 1272 5.35

bays29 29 2070 2036 2020 2.48

berlin58 58 8006 8135 7542 6.15

eil51 51 450 452 426 5.63

Fig. 5. The time complexity function curve graph.

Considering the error in path length, the difference between

the optimized path length obtained by our algorithm and the

shortest path is minimal. Regardless of the dimension, the error

remains within 6.15%. From the results in Table II and Fig. 6,

one can see that there are no obvious undesirable paths with

unnecessary overlap. Therefore, the paths selected by our

algorithm are considered to be satisfactory choices.

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Fig. 6. TSPLIB data set bay29(top), berlin58(middle) and eil51(bottom)

optimization path comparison chart

C. Results and Comparison of TSPLIB Test Sets

In order to verify whether good results can be achieved even

with a higher number of cities and not limited to randomly

distributed cities, we obtained five test datasets from TSPLIB

for optimization. We compared the results with the simulated

annealing (SA) algorithm in Python, as well as with the known

shortest path lengths provided by the database, calculating the

errors. The results, as shown in TABLE II, indicate that the

path lengths obtained by ACUO are close to those of the

simulated annealing method, with some parts performing better

and others slightly worse. For datasets with city coordinates

provided, the relative positions of cities can be plotted to

visualize the differences between the paths generated by

ACUO and SA in Fig. 6. Compared to the ground truth, the

errors in path length compared to the provided shortest path

lengths are also within 6.15%.

IV. CONCLUSIONS

We introduce the Annealing-inspired Continuous

Unconstrained Optimization (ACUO) algorithm, designed to

tackle combinatorial optimization problems by transforming

them into polynomial function optimization in the continuous

domain. This structural innovation sets ACUO apart from

traditional discrete iterative methods, enabling the integration

of both discrete and continuous constraints, thereby addressing

system stability and facilitating the escape from local minima.

Using the Traveling Salesman Problem (TSP) as a case study,

we demonstrate that ACUO achieves polynomial growth in

time complexity, effectively mitigating the curse of

dimensionality. While the algorithm maintains high accuracy

for low-dimensional problems, the accuracy diminishes as the

number of cities increases. Nonetheless, the maximum error is

within 6.15%, and path visualization confirms the validity of

the solutions. ACUO exhibits broad applicability, a unique

model architecture, and the capability to solve combinatorial

problems within a specific margin of error.

REFERENCES

[1] Larranaga, P., et al., Genetic algorithms for the travelling

salesman problem: A review of representations and operators.

Artificial intelligence review, 1999. 13: p. 129-170.

[2] Finnila, A.B., et al., Quantum annealing: A new method for

minimizing multidimensional functions. Chemical Physics

Letters, 1994. 219(5): p. 343-348.

[3] Mohimani, H., M. Babaie-Zadeh, and C. Jutten, A fast approach

for overcomplete sparse decomposition based on smoothed L0

norm. IEEE Transactions on Signal Processing, 2008. 57(1): p.

289-301.

[4] Diaby, M., The traveling salesman problem: a linear

programming formulation. arXiv preprint cs/0609005, 2006.

[5] Reinelt, G., TSPLIB—A traveling salesman problem library.

ORSA journal on computing, 1991. 3(4): p. 376-384.

[6] Margalit, D., J. Rabinoff, and L. Rolen, Interactive linear algebra.

Georgia Institute of Technology, 2017.

[7] Hoerl, A.E. and R.W. Kennard, Ridge Regression: Applications

to Nonorthogonal Problems. Technometrics, 1970. 12(1): p. 69-

82.

[8] Louizos, C., M. Welling, and D.P. Kingma, Learning Sparse

Neural Networks through L0 Regularization. ArXiv, 2017.

abs/1712.01312.

[9] Papadimitriou, C.H. and K. Steiglitz, Combinatorial

optimization: algorithms and complexity. 1998: Courier

Corporation.

[10] Jünger, M., G. Reinelt, and G. Rinaldi, The traveling salesman

problem. Handbooks in operations research and management

science, 1995. 7: p. 225-330.

[11] Applegate, D.L., et al., The traveling salesman problem.

Princeton Series in Applied Mathematics. Princeton University

Press, Princeton, NJ, 2006: p. 1-5.

