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Abstract—Combinatorial optimization problems, such as IC 

layout and industrial scheduling, have significant industrial 

applications but are challenging due to exponential time 

complexity. In this work, we propose a novel annealing-inspired 

heuristic algorithm that treats combinatorial problems as 

function optimization problems using nonlinear programming. 

The proposed gradient-descent-based solver significantly 

improves the convergence rate and includes a new regularization 

constraint to escape local minima by increasing convexity. 

Applied to the Traveling Salesman Problem (TSP) with various 

city counts, the proposed algorithm demonstrates polynomial time 

complexity. It much reduces the complexity from (n1)!/2 to n4 

and has a marked improvement in computation efficiency. 

Notably, for a 50-city TSP, the relative error is just around 5%, 

indicating the accuracy and efficiency of the proposed algorithm 

in solving high-dimensional instances. 

 

I. INTRODUCTION 

In nature, many processes seek stable states, such as the 

evolution and changes in ecological environments or 

macroscopic phenomena resulting from the balance of 

microphysical laws. These processes can be considered natural 

optimization mechanisms. Over the past 50 years, various 

global optimization algorithms have been developed to 

simulate these processes, including Simulated Annealing, 

Neural Networks, and Genetic Algorithms [1]. Combinatorial 

optimization problems are crucial due to their wide range of 

applications, such as IC layout, industrial scheduling, and 

isomer analysis. The Traveling Salesman Problem (TSP) is a 

prominent example frequently studied in mathematics and 

computer science. Traditional methods like dynamic 

programming and branch-and-bound aim to solve these 

problems but often require significant computational resources. 

However, many combinatorial optimization problems are 

NP-hard or NP-complete, making exhaustive search 

impractical within a reasonable time frame. The exponential 

growth in computational complexity remains a significant 

challenge, especially for high-dimensional instances. 

In this study, we develop an annealing-inspired algorithm to 

address the exponential growth in computational complexity in 

combinatorial optimization problems. Our method treats these 

problems as function optimization tasks using nonlinear 

programming, with the TSP as a key example. Inspired by 

Finnila's Quantum Annealing in 1994 [2], which utilizes 

quantum tunneling, we propose leveraging pathological system 

characteristics to achieve states close to multiple solutions. 

This approach, followed by continuous unconstrained 

optimization, transforms the problem into a universal 

combinatorial solver, applicable to TSP, IC layout, industrial 

scheduling, and heterogeneous structure analysis. 

Our approach employs gradient descent to solve ill-

conditioned systems, freely choosing methods like the 

conjugate gradient to improve convergence speed. Inspired by 

the framework in [3], we introduce a regularization term 

similar to thermal annealing, enabling the solver to escape local 

minima by gradually increasing cost function convexity. We 

validate the feasibility of our algorithm through TSP of 

different dimensions, a standard test model in mathematics and 

computer science. This paper emphasizes the algorithm's 

uniqueness and generality, presenting it as an effective strategy 

for improving combinatorial optimization solutions. 

 

II. BASIC PRINCIPLES OF OUR APPROACH 

The Traveling Salesman Problem (TSP) can be transformed 

into a quadratic polynomial problem through nonlinear 

programming, representing it as a binary variable optimization 

problem [4]. Let TSP be defined as n cities in the set 𝑁 ≡
ሼ1,2, … 𝑛ሽ. Without loss of generality, let the nth city be both 

the starting point and the endpoint, referred to as the 

"Hometown," since the degree of freedom for an n-city TSP is 

effectively only 𝑛 െ 1.  

A. Using Route Length as Cost Function in Unconstrained 

Optimization 
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After excluding the hometown city, the remaining number 

of cities is denoted as 𝑚 ൌ  𝑛 െ 1, forming a city set 𝐶 ≡
 ሼ1,2, . . . 𝑚ሽ , and 𝑇 ≡  ሼ1,2, . . . 𝑚ሽ  as the ordinal set 

representing travel time. These correspond to the order of 

visiting cities in the set 𝐶. Through these two sets, we generate 

a set of binary variables 𝑥௧௝ ሺ𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶ሻ, defined as follows: 

𝑥௧௜ ≡ ൜
1,    if city 𝑖 is visited at time order 𝑡
0,    otherwise

 , 1 ൑ 𝑡, 𝑖 ൑ 𝑚 

          (1) 

𝑥௧௜  has 𝑘 variables, where 𝑘 ൌ  𝑚ଶ, capable of expressing 

one possible path among all permutations, representing the 

city 𝑖 at time 𝑡. Finally, all variables are placed into a 𝑘 ൈ 1 

matrix, 𝐱 ∈ ሼ0,1ሽ௞ . The optimized cost function 𝐽ଵ ሺ𝐱ሻ can 

then be expressed as:   

   x ≡ ሾ𝑥ଵଵ  𝑥ଵଶ   …  𝑥ଵ௠   …  𝑥௠ଵ  𝑥௠ଶ   …   𝑥௠௠ሿ்  (2) 

   𝐽ଵሺxሻ ≡ ∑ ∑ ∑ 𝑑௜௝𝑥௧௜𝑥ሺ௧ାଵሻ௝௝∈஼∖ሼ௜ሽ௜∈஼௧∈்∖ሼ௠ሽ ൅ 

                     ∑ ∑ 𝑐௜𝑥௧௜௜∈஼௧∈ሼଵ,௠ሽ           (3) 

The set of paths between two cities is denoted as 𝐸 ൌ  𝐶ଶ. 

Among them, 𝑑௜௝ ሺሺ𝑖, 𝑗ሻ ∈ 𝐸ሻ is the distance between city i 

and city j, and 𝑐௜ ሺ𝑖 ∈ 𝐶ሻ is the distance from city i to the 

hometown. This way, the optimized cost function can fully 

express the distance of one possible path. 

Since the number of distances 𝑑௜௝  between cities is 

𝑚ሺ𝑚 െ 1ሻ/2 , and each route contains n distances between 

cities, the average route length 𝐿௔௩௚ is approximately: 

    𝐿avg ≡
ଶ௡

௠ሺ௠ିଵሻ
൫∑ ∑ 𝑑௜௝௝∈஼ሼ௜ሽ௜∈஼ ൅ ∑ 𝑐௜௜∈஼ ൯  (4) 

The new cost function 𝐽ଶሺxሻ is the normalized 𝐽ଵሺxሻ:  

            𝐽ଶሺ𝐱ሻ ≡ 𝐽ଵሺ𝐱ሻ/𝐿avg    (5) 

B. Using Regularization to Incorporating Constraints 

We utilize regularization to maintain our problem as 

unconstrained optimization by incorporating regularization 

terms to incorporate constraints. In Fig. 1, each row is 

associated with the condition that only one city is visited at a 

time, meaning that only one binary variable in each row equals 

1, and the others are 0. Similarly, each column is associated 

with the condition that each city is visited only once, meaning 

that only one binary variable in each column equals 1, and the 

others are 0. Therefore, we first transform the TSP into a 

constrained optimization problem: 

 

 

 

Fig. 1. Traveling Salesman Problem (n = 5) variable presentation form. The 

arrangement of the remaining cities is expressed using an 𝑛 ൈ 𝑛 matrix, where 

columns represent the cities and rows represent different time sequences. 

 

Problem TSP: 

Minimize  

 𝐽୘ୗ୔ሺ𝐱ሻ ≡
ଵ 

௅avg
൫∑ ∑ ∑ 𝑑௜௝𝑥௧௜𝑥ሺ௧ାଵሻ௝௝∈஼∖ሼ௜ሽ௜∈஼௧∈்∖ሼ௠ሽ ൅

                      ∑ ∑ 𝑐௜𝑥௧௜௜∈஼௧∈ሼଵ,௠ሽ ൯             (6) 

subject to  

    ∑ 𝑥௧௝௝∈஼ ൌ 1 , 𝑡 ∈ 𝑇,   ∑ 𝑥௧௝ ൌ 1௧∈் , 𝑗 ∈ 𝐶,     

    𝑥௧௝ ∈ ሼ0,1ሽ , 𝑡 ∈ 𝑇 , 𝑗 ∈ 𝐶.           (7) 

The above two types of constraints are transformed into the 

following minimization regularization terms, which require the 

sum of each row and each column to be close to 1. Therefore, 

the number of added regularization terms will be the sum of the 

number of rows and columns, 2m. However, currently, it is not 

required for all solution elements to be binary values; solutions 

may be floating-point numbers between 0 and 1: 

  min
𝐱

൫∑ 𝑥௧௝ െ 1௝∈஼ ൯
ଶ
,   min

𝐱
൫∑ 𝑥௧௝ െ 1௧∈் ൯

ଶ
.  (8)      

According to the regularization method, by adding the above 

regularization terms, a new cost function 𝐽ଷሺ𝐱ሻ is generated: 

  𝐽ଷሺ𝐱ሻ ≡ 𝐽ଶሺ𝐱ሻ ൅ 

      𝜆ଵ ቂ∑ ൫∑ 𝑥௧௝ െ 1௝∈஼ ൯
ଶ

௧∈் ൅ ∑ ൫∑ 𝑥௧௝ െ 1௧∈் ൯
ଶ

௝∈஼ ቃ    

               (9) 

Since 𝐽ଷሺ𝐱ሻ is a quadratic polynomial function with respect 

to 𝐱, we can transform 𝐽ଷሺ𝐱ሻ into matrix form: 
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Fig. 2. The normalized regularization term 𝑔ఙሺ𝑥ሻ for several σ. 

 

            𝐽ଷሺ𝐱ሻ ൌ 𝐱்𝐏𝐱 ൅ 𝐪்𝐱 ൅ 𝑟        (10)  

where 𝐏  is a symmetric 𝑛 ൈ 𝑛  matrix with each element 

expressed in 𝑑௜௝ and 𝜆ଵ, 𝐪 is an 𝑛 ൈ 1 column matrix with 

each element expressed in 𝜆ଵ , and 𝑟  is a scalar / constant 

expressed in 𝜆ଵ. 

C. Formally Treating Binary-valued Variables as 

Continuous Variables 

Heading toward possible adoption of the gradient-descent 

(GD) based methods, such as the Newton-Conjugate-Gradient 

method, for searching the minimum, we formally treat the 

binary-valued variables 𝐱 as continuous variables such that 

𝐱 ∈ ℝ௡. Since the cost function 𝐽ଷሺ𝐱ሻ is quadratic in form, 

𝐽ଷሺ𝐱ሻ  is infinitely differentiable, which guarantees the 

existence of the gradient matrix and Hessian matrix, that are 

usually required by GD based methods. 

In the continuous domain, an 𝐱 ∈ ℝ௡ does not necessarily 

represent a feasible route. Only a binary-valued 𝐱 ∈ ሼ0,1ሽ௡ 

can represent a feasible route. As ሼ0,1ሽ௡  is a very sparse 

subset of ℝ௡, we are interested in heuristics that tend to allow 

many candidates 𝐱 in the continuous domain ℝ௡, so that at 

later stages we can narrow down to those candidates close 

enough to the binary-valued domain ሼ0,1ሽ௡. One such “many-

candidate” heuristic for picking 𝜆ଵ  is described in the 

following subsection. 

D. Picking λ1 by Heuristics Favoring Near-Singular Systems 

The gradient of the cost function 𝐽ଷሺ𝐱ሻ is 

              ∇𝐽ଷሺ𝐱ሻ ൌ 2𝐏𝐱 ൅ 𝐪.     (11)                    

A necessary condition for the minimum of 𝐽ଷሺ𝐱ሻ to happen at 

𝐱 ൌ 𝐱ො is “zero gradient”  

                   𝐏𝐱ො ൌ െ𝐪/𝟐.   (12) 

Since the above is a linear equation, if 𝐏 is near-singular / 

ill-conditioned, many 𝐱ො exist such that 𝐽ଷሺ𝐱ොሻ falls within an 

𝜖-neighborhood of a local minimum of 𝐽ଷሺ𝐱ሻ. Because 𝐏 is 

expressed in terms of 𝜂ଵ,  the following “many-candidate” 

heuristic (as mentioned in the last subsection) is devised. 

Heuristic: Picking 𝜂ଵ  such that 𝐏 is near-singular / ill-

conditioned, or equivalently, the condition number of 𝐏  is 

large. 

E. Cost Functions for Square of Variables 

The cost function J3(x) includes the distance form of 

𝑑௜௝𝑥௧௜𝑥ሺ௧ାଵሻ௝, which can turn negative when the variables are 

in the continuous domain 𝐱 ∈ ℝ௡. We simply substitute each 

variable by its square to arrive at 𝑑௜௝𝑥௧௜
ଶ 𝑥ሺ௧ାଵሻ௝

ଶ  to guarantee 

positive values. Let   

  𝐱𝟐 ≡ ሾ𝑥ଵଵ
ଶ   𝑥ଵଶ

ଶ   …  𝑥ଵ௖
ଶ   …  𝑥௖ଵ

ଶ   𝑥௖ଶ
ଶ   …   𝑥௖௖

ଶ ሿ்.  (13)       

The new cost function J4(x) is chosen as 

     𝐽ସሺ𝐱ሻ ≡ 𝐽ଷ൫𝐱𝟐൯ ൌ 𝐱𝟐்
𝐏𝐱𝟐 ൅ 𝐪்𝐱𝟐 ൅ 𝑟    (14)     

F. Using Regularization to Incorporate Constraints 

Favoring Binary Values 

The general framework in reference [1] has inspired the 

following regularization term f(x) for the constraints favoring 

binary values {0, 1}.  

     𝑓ఙሺ𝑥ሻ ≡ 1 െ exp ቀെ𝑥2

2𝜎2ቁ െ exp ቂെሺ𝑥െ1ሻ2

2𝜎2 ቃ,      (15) 

       lim
ఙ→଴

 𝑓ఙሺ𝑥ሻ ൌ ൜ 
0,     if 𝑥 ൌ 0 or 1
1, otherwise

.    (16) 

Note that f(x) is symmetric about 𝑥 ൌ 0.5, and thus 𝑓ሺ0ሻ ൌ
𝑓ሺ1ሻ. For larger 𝜎, 𝑓ఙሺ𝑥ሻ has one minimum at 𝑥 ൌ 0.5. For 

smaller 𝜎, 𝑓ఙሺ𝑥ሻ has two minima at 𝑥 ൌ 0 and 𝑥 ൌ 1. 
However, the range of f(x) varies with different values of 𝜎. 

When 𝜎  increases to the point where there is only one 

minimum, the minimum value of the function can be far 

smaller than 0, as shown in Fig. 2. To rescale the range of f(x) 

for all possible 𝜎 values to lie between 0 and 1, we normalize 

the regularization term function f(x). The following is the 

formula for normalizing the function: 

        𝑓௡௢௥௠ ൌ ሺ𝑓 െ 𝑓௠௜௡ሻ/ሺ𝑓௠௔௫ െ 𝑓௠௜௡ሻ  (17)      

where 𝑓௠௔௫ remains unchanged with respect to 𝜎, fixed at 1, 

and 𝑓௠௜௡ varies. Therefore, to define the scaling scalar 𝑠ఙ for 

the normalized function 𝑓ఙ
∗ሺ𝑥ሻ, we generate the normalized 

function. The function plot is depicted in Fig. 2, where the 

curve represents the results for several different 𝜎 values.   
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Fig. 3. Visualization of Annealing-Inspired method. 

   𝑠ఙ ≡ 1 െ min
௫∈ℝ

𝑓ఙሺ𝑥ሻ 

      ൌ & ൜
1 െ 𝑓ఙሺ0ሻ   ,      𝑓ఙሺ0.5ሻ ൐ 𝑓ఙሺ0ሻ
1 െ 𝑓ఙሺ0.5ሻ,     otherwise

,      (18)  

   𝑓ఙ
∗ሺ𝑥ሻ ≡ ሺ𝑓ఙሺ𝑥ሻ ൅ 𝑠ఙ െ 1ሻ/𝑠ఙ.    (19) 

G. Annealing-Inspired: Slowly Decreasing σ in Attempts to 

Escape Local Minima 

The cost function 𝐽ఙሺ𝐱ሻ may have many local minima. In 

Fig. 3, the regularization term 𝑔ఙሺ𝑥ሻ is more like a line for 

larger 𝜎. It is flatter, has lower convexity, less favors binary 

{0, 1}, and renders fewer local minima for 𝐽ఙሺ𝐱ሻ. For smaller 

𝜎, 𝑔ఙሺ𝑥ሻ has larger convexity, much favors binary ሼ0,1ሽ, and 

renders more local minima for 𝐽ఙሺ𝐱ሻ. In attempts to escape 

local minima, 𝜎  is slowly decreased in each optimization 

iteration, in which the cost function 𝐽ఙሺ𝐱ሻ is optimized using 

a GD based method. 

 

III. EXPERIMENTAL AND RESULTS 

This chapter is divided into four sections. The first section 

illustrates the differences between the algorithm proposed in 

this paper and existing algorithms. The second section tests the 

algorithm model with parameter adjustments for the Traveling 

Salesman Problem (TSP) across various dimensions. The third 

section presents the results and comparisons of finding the 

shortest path in a randomly distributed city model. The final 

section uses the renowned TSPLIB dataset as the benchmark to 

showcase the algorithm’s results and advantages over other 

algorithms [5]. The algorithm is implemented in Python 3.11 

without GPU acceleration. The hardware specifications are an 

Intel Core i5-7200U with 12GB RAM. 

A. Evaluation of Time Complexity 

The Traveling Salesman Problem is an NP-hard problem, 

meaning it cannot be solved in polynomial time. Its time 

complexity increases at least exponentially. For instance, for 

the Traveling Salesman Problem with n cities, there are 

 ሺ𝑛 െ 1ሻ!/2   possible routes. Finding the shortest route among 

them requires a time complexity of 𝑂ሺ𝑛!ሻ, known as factorial 

time. Algorithms of this nature are often referred to as 

exhaustive or brute-force methods. As the input n increases, the 

execution time increases dramatically. Just for 11 cities, there 

are 1,814,400 routes. While cases up to 12 cities can be handled 

conventionally, 17 cities require the most powerful 

computational resources available today. However, problems 

involving 21 cities are nearly impossible to solve. 

To mitigate the excessively large computational complexity, 

dynamic programming can be employed. This approach breaks 

down the entire Traveling Salesman Problem into several 

subproblems, decomposing the entire route into multiple 

subpaths. Trading space complexity for reduced time 

complexity is highly effective, reducing the time complexity to 

𝑂ሺ𝑛ଶ2௡ሻ . We can observe that beyond 10 cities, dynamic 

programming's complexity becomes lower than brute-force 

methods. By the time 20 cities are reached, there is an eight-

order-of-magnitude difference between the two approaches. As 

shown in Fig. 4, this difference accelerates as the 

dimensionality increases. However, dynamic programming 

still exhibits exponential complexity and cannot achieve the 

polynomial time complexity required by modern integrated 

circuit computers. 

The algorithm we developed is based on the matrix 𝑃 for 

optimizing computations, with a dimensionality of  𝑛ସ . The 

theoretical time complexity is 𝑂ሺ𝑛ସሻ. However, during the 

search for the minimum value, we utilize the Newton conjugate 

gradient method. Rather than delving into the details of 

algorithm analysis, we chose a more efficient approach by the 

program execution time calculations to assess our algorithm's 

time complexity. This way systematically analyzed the 

potential factors affecting time complexity and observed the 

impact as the number of cities increases. 

In Fig. 4, we observed that our ACUO algorithm's 

computation time grows with the dimensionality, roughly 

matching O(n4). We also analyzed the computation times of 

two exact solving algorithms, exhaustive search (the brute-

force method), and dynamic programming, using results from 

the package of Python-tsp. They exhibit a trend like the 

estimated time complexity. Hence, these results can serve as 

the evaluation standard for our algorithm's time complexity. 

Despite not being outstanding in terms of computational speed, 

the time complexity remains within polynomial time 

complexity. Thus, the problem with high city number can find 

a solution in finite time for our algorithm.  
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Fig. 4. Comparison of the computation time (red lines) and the complexity (black line) of the (Left) in Dynamic Programming, (Middle) Brute-force, and (Right) 

proposed ACUO methods. One can see that the proposed algorithm can much reduce the computation time and complexity.  

 

TABLE I. Comparison of ACUO Results with Standard Solutions for 

Randomly Distributed Cities. 

N ACCU(%) 
Brute 
Force 

ACUO DIFF DIFF%

5 94 0.8169 0.8186 0.00171 0.2093 

6 89 0.7451 0.7465 0.00144 0.1935 

7 87 0.6816 0.6833 0.00168 0.2458 

8 83 0.6359 0.6381 0.00226 0.3549 

9 78 0.5879 0.5910 0.00307 0.5225 

10 77 0.5531 0.5562 0.00309 0.5579 

11 70 0.5251 0.5285 0.00344 0.6558 

12 55 0.5027 0.5100 0.00732 1.4553 

13 42 0.4806 0.4902 0.00957 1.9918 

14 36 0.4561 0.4676 0.01154 2.5306 

15 37 0.4369 0.4511 0.01414 3.2366 

 

B. Results of ACUO for Random Cities Distribution 

We extensively tested the optimization algorithm using 

randomly distributed city data, comparing the optimized paths 

obtained by our algorithm with the exact solutions obtained by 

dynamic programming. We examined the accuracy and error of 

the ACUO in low dimensions. We tested city numbers ranging 

from n = 5 to n = 15 in various scenarios, generating 100 sets 

of test data for each scenario using random distributions. The 

parameters were selected based on the optimal combinations 

obtained in the previous section. The results are presented in 

Table I and Fig. 5. 

 

 

 
 

TABLE II. Optimization path length comparison using the TSPLIB data set. 

Dataset n ACUO SA MIN ERR (%)

gr24 24 1340 1350 1272 5.35 

bays29 29 2070 2036 2020 2.48 

berlin58 58 8006 8135 7542 6.15 

eil51 51 450 452 426 5.63 

 

 

Fig. 5. The time complexity function curve graph.  

 

Considering the error in path length, the difference between 

the optimized path length obtained by our algorithm and the 

shortest path is minimal. Regardless of the dimension, the error 

remains within 6.15%. From the results in Table II and Fig. 6, 

one can see that there are no obvious undesirable paths with 

unnecessary overlap. Therefore, the paths selected by our 

algorithm are considered to be satisfactory choices. 
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Fig. 6. TSPLIB data set bay29(top), berlin58(middle) and eil51(bottom) 

optimization path comparison chart  
 
C. Results and Comparison of TSPLIB Test Sets 

In order to verify whether good results can be achieved even 

with a higher number of cities and not limited to randomly 

distributed cities, we obtained five test datasets from TSPLIB 

for optimization. We compared the results with the simulated 

annealing (SA) algorithm in Python, as well as with the known 

shortest path lengths provided by the database, calculating the 

errors. The results, as shown in TABLE II, indicate that the 

path lengths obtained by ACUO are close to those of the 

simulated annealing method, with some parts performing better 

and others slightly worse. For datasets with city coordinates 

provided, the relative positions of cities can be plotted to 

visualize the differences between the paths generated by 

ACUO and SA in Fig. 6. Compared to the ground truth, the 

errors in path length compared to the provided shortest path 

lengths are also within 6.15%. 

 

IV. CONCLUSIONS 

We introduce the Annealing-inspired Continuous 

Unconstrained Optimization (ACUO) algorithm, designed to 

tackle combinatorial optimization problems by transforming 

them into polynomial function optimization in the continuous 

domain. This structural innovation sets ACUO apart from 

traditional discrete iterative methods, enabling the integration 

of both discrete and continuous constraints, thereby addressing 

system stability and facilitating the escape from local minima. 

Using the Traveling Salesman Problem (TSP) as a case study, 

we demonstrate that ACUO achieves polynomial growth in 

time complexity, effectively mitigating the curse of 

dimensionality. While the algorithm maintains high accuracy 

for low-dimensional problems, the accuracy diminishes as the 

number of cities increases. Nonetheless, the maximum error is 

within 6.15%, and path visualization confirms the validity of 

the solutions. ACUO exhibits broad applicability, a unique 

model architecture, and the capability to solve combinatorial 

problems within a specific margin of error.  
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