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Abstract—We propose a novel regularization function, named
Rotation-Invariant Spatio-Spectral Total Variation (RISSTV), for
hyperspectral (HS) image denoising. Spatio-Spectral Total Varia-
tion (SSTV) and its extended methods, defined using the second-
order spatio-spectral differences, are known as popular regu-
larization approaches that capture the HS image-specific spatio-
spectral piecewise smoothness for effectively removing noise from
HS images. However, these methods lack rotation-invariance and
tend to corrupt round structures and oblique edges on HS images.
To address this issue, we assign rotation-invariance to TV and
establish RISSTV, which can accurately recover the detailed
structures in HS images. Furthermore, we formulate the HS
image denoising problem as a convex optimization problem that
includes RISSTV and develop an efficient algorithm based on a
preconditioned primal-dual splitting method to solve this problem
efficiently. Finally, we demonstrate the effectiveness of RISSTV
compared with existing HS image regularization models through
mixed noise removal experiments.

I. INTRODUCTION

Hyperspectral (HS) images have rich spectral information
in a wide range of wavelengths from the near-infrared to
the ultraviolet. This information can visualize materials and
phenomena that cannot be distinguished by RGB images,
making HS imaging a key technology for applications in
diverse fields, such as agriculture, mineralogy, astronomy, and
biotechnology [1]–[4]. However, HS images are unavoidably
contaminated by various types of noise in the measurement
process, such as thermal noise, quantization noise, and shot
noise. Such noise significantly degrades the performance of
subsequent processing, including unmixing [5], [6], classifica-
tion [7]–[9], and anomaly detection [10], [11]. Therefore, HS
image denoising is an essential preprocessing task [12]–[14].

In the domain of HS image denoising, the Spatio-Spectral
Total Variation (SSTV) model [15] stands out as a powerful
regularization approach that captures underlying properties on
HS images. SSTV is defined by the ℓ1-norm of the second-
order spatio-spectral differences, where the first-order spatial
differences are calculated after the spectral ones are calculated,
thus removing noise while preserving the HS image-specific
spatio-spectral consistency. For this reason, SSTV has been
widely used in many state-of-the-art HS image denoising meth-
ods [16]–[22]. One of the successful extensions of SSTV is
Hybrid Spatio-Spectral Total Variation (HSSTV) [19] proposed
by Takeyama et al., which integrates the first-order spatial
differences into SSTV. Directly promoting of spatial piecewise

smoothness removes similar noise (called artifacts) between
adjacent bands that SSTV tends to retain. However, SSTV and
its extended methods, including HSSTV, can corrupt the round
structures and oblique edges in HS images due to their lack of
rotation-invariance. This raises the question: Could we design
SSTV-type functions with the rotation-invariance so that noise
can be removed while preserving the more detailed structure
of HS images?

In this paper, we propose a denoising method for HS images
using a newly introduced Rotation Invariant Spatio-Spectral
Total Variation model (RISSTV). RISSTV is built upon a the-
oretical framework proposed by Condat [23] that significantly
improves the rotation-invariance of TV for grayscale images.
The rotation-invariance is an important property for restoring
round structures and oblique edges because the TV value is
independent of direction. The main contributions of this article
are listed below:

• We design a novel regularization formulation, namely
RISSTV. RISSTV is designed to combine two types
of TVs, consisting of the second-order spatio-spectral
differences and the first-order spatial differences, thus
effectively removing noise and suppressing artifacts. Fur-
thermore, since the two types of TVs are defined to
be rotation-invariant, RISSTV can preserve the detailed
structure on HS images, including round structures and
oblique edges, while removing noise.

• We formulate the HS image denoising problem as a
constrained convex optimization problem that includes
RISSTV. In this formulation, the data-fidelity term and the
term characterizing sparse noise are imposed as convex
constraints rather than added as part of the objective
function, which makes parameter tuning easier.

• To solve our optimization problem for HS image denois-
ing, we develop an efficient algorithm based on a precon-
ditioned primal-dual splitting method (P-PDS) [24] with
an operator norm-based stepsize selection method [25].
Unlike the standard PDS [26], [27], our proposed algo-
rithm can automatically determine the appropriate step-
sizes based on the problem structure.

Finally, we demonstrate the effectiveness of the proposed
method by comparing it with state-of-the-art HS image reg-
ularization models through HS image denoising experiments.



II. PRELIMINARIES

A. Notations

Throughout this paper, we denote vectors and matrices by
the boldface lowercase letters (e.g., x) and boldface capital
letters (e.g., X), respectively. We treat an HS image, denoted
by u with N1 vertical pixels, N2 horizontal pixels, and N3

bands. We denotes the total number of cube data elements by
N = N1N2N3. For a matrix data x ∈ RN1N2 , the value of the
location (n1, n2) in the domain {1, . . . , N1} × {1, . . . , N2}
is denoted by [X]n1,n2

. The ℓ1-norm and the ℓ2-norm of a
vector x ∈ RN are defined as ∥x∥1 :=

∑N
n=1 |xn| and

∥x∥2 :=
√∑N

n=1 x
2
n, respectively, where xn represents the

n-th entry of x. For an HS image u ∈ RN , let Dv ∈ RN×N ,
Dh ∈ RN×N , and Ds ∈ RN×N be the forward difference
operators in the horizontal, vertical, and spectral directions,
respectively, and the boundary condition is the Neumann
boundary. Here, spatial difference operator is denoted by
D :=

(
D⊤

v D⊤
h

)⊤ ∈ R2N×N . Other notations will be
introduced as needed.

B. Hybrid Spatio-Spectral Total Variation (HSSTV) [19]

For an HS image u ∈ RN , HSSTV [19] is defined as

HSSTV(u) :=

∥∥∥∥DDsu
ωDu

∥∥∥∥
1,p

, (1)

where ∥ · ∥1,p is the mixed ℓ1,p norm, and ω ≥ 0 is a
hyperparameter, p is assumed to be 1 or 2, i.e., the ℓ1 norm
(∥ · ∥1,1 = ∥ · ∥1) or the mixed ℓ1,2 norm, respectively. In
HSSTV, the second-order spatio-spectral differences and the
first-order spatial differences capture the spatio-spectral piece-
wise smoothness and directly the spatial piecewise smoothness,
respectively. In addition, the first-order spatial differences sup-
press noise-like artifacts that are produced by only promoting
the spatio-spectral piecewise smoothness.

C. Condat’s rotation-invariant TV [23]

A new TV with rotation-invariance proposed by Condat [23]
for a grayscale image x ∈ RN1N2 is defined in the dual domain
as follows: for all n1 = 1, . . . , N1, n2 = 1, . . . , N2,

TVc(x) := max
y∈R2N1N2

⟨Dgx,y⟩ s.t.


∥[L↕y]n1,n2

∥1 ≤ 1,

∥[L↔y]n1,n2
∥1 ≤ 1,

∥[L•y]n1,n2
∥1 ≤ 1,

(2)
where Dg ∈ R2N1N2×N1N2 is the spatial difference operator
for the grayscale image and y = (y1,y2) is the dual image
pair. For the definition of the three operators L↕, L↔, L•, see
Eqs. (9)-(14) in [23]. The dual images [y1]n1,n2

, [y2]n1,n2
,

like [Dvx]n1,n2 , [Dhx]n1,n2 , can be located at the points
(n1+

1
2 , n2), (n1, n2+

1
2 ), respectively. The three operators L↕,

L↔, L• correct this half-pixel shift and interpolate bilinearly
the dual image pair y onto the grids (n1+

1
2 , n2), (n1, n2+

1
2 ),

(n1, n2), respectively. The dual image pair y satisfies the
constraints on their respective grids, then Condat’s TV has

the rotation-invariant property. The dual formulation Eq. (2)
can be rewritten into the equivalent primal formulation as

TVc(x) = min
w↕,w↔,w•∈R2N1N2

∥w↕∥1,2 + ∥w↔∥1,2 + ∥w•∥1,2

s.t. L⊤
↕ w↕ + L⊤

↔w↔ + L⊤
• w• = Dgx, (3)

where ∥ · ∥1,2 is the mixed ℓ1,2 norm grouping the vertical
and horizontal directions. The three vectors w↕, w↔, w• are
viewed as gradients on the grids (n1 +

1
2 , n2), (n1, n2 +

1
2 ),

(n1, n2), respectively. For a more compact form, let the linear

operator Lg =
(
L⊤
↕ L⊤

↔ L⊤
•

)⊤
∈ R6N1N2×2N1N2 , and

the vector w =
(
w↕ w↔ w•

)⊤ ∈ R6N1N2×2N1N2 . Then
Eq. (3) can be written as

TVc(x) = min
w∈R6N1N2

∥w∥1,2 s.t. L⊤
g w = Dgx. (4)

III. PROPOSED METHOD

A. Rotation Invariant Spatio-Spectral Total Variation

Combining the second-order spatio-spectral differences with
the first-order spatial differences and having the rotation-
invariant property, our RISSTV is defined as follows:

RISSTV(u) := min
w1,w2

ω∥w1∥1,2 + ∥w2∥1,2

s.t.

{
L⊤w1 = Du,

L⊤w2 = DDsu,
(5)

where ω ≥ 0, w1, w2 ∈ R6N are auxiliary variables,
L ∈ 2N × 6N is linear operator formed by arranging
N3 diagonals of Lg defined in Eq. (4). Mainly, TV of the
second-order differences related to the second term and second
constraint in Eq. (5) captures the HS image-specific spatio-
spectral piecewise smoothness. Associated with the first term
and the first constraint, TV of the first-order spatial differ-
ences directly promotes the spatial piecewise smoothness and
plays an important role in suppressing the noise-like artifacts
produced by only imposing TV of the second-order spatio-
spectral differences. These two types of TVs are an extension
of Condat’s idea and have rotation-invariance, so RISSTV can
recover round structures and oblique edges in HS images more
accurately than existing TV-based methods.

The parameter ω controls the relative importance of TV of
the first-order spatial differences to one of the second-order
spatio-spectral differences. If ω is larger, i.e., we make the
direct spatial smoothness stronger on a restored HS image,
RISSTV would cause over-smoothing of the detailed struc-
tures. Therefore, ω should be set to less than one. In fact, a
good choice of ω is empirically around 0.01 to 0.05 for various
HS images.

B. HS Image Denoising by RISSTV

An observed HS image v ∈ RN contaminated by mixed
noise is modeled by

v = ū+ s̄+ n, (6)
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where ū is a clean HS image, s̄ is a sparse noise that models
outliers, and n represents random noise, respectively.

Based on the above observation model, we formulate the
HS image denoising problem that handles RISSTV as a
constrained convex optimization problem with the following
form:

min
u,w1,w2,s

ω∥w1∥1,2 + ∥w2∥1,2 s.t.



u ∈ Rµ,µ̄,

s ∈ B1,η,

u+ s ∈ Bv
2,ε,

L⊤w1 = Du,

L⊤w2 = DDsu,
(7)

where

Rµ,µ̄ := {x ∈ RN | µ ≤ xi ≤ µ̄ (i = 1, . . . , N)}, (8)

B1,η := {x ∈ RN | ∥x∥1 ≤ η}, (9)

Bv
2,ε := {x ∈ RN | ∥x− v∥2 ≤ ε}. (10)

The first constraint is a box constraint with µ < µ̄ which
represents the dynamic range of u. The second constraint
serves as data-fidelity with the v-centered ℓ2-ball of the radius
ε > 0. The third constraint characterizes sparse noise with the
zero-centered ℓ1-ball of the radius η > 0. Because ε and η
can be determined based solely on the intensity of each noise
(independently of the other terms in the objective function),
such a data fidelity constraint makes the adjustment of the
hyperparameters much easier than when a data fidelity term
is added to the objective function. These advantages are also
addressed, for example, in [28]–[32].

C. Optimization

Using indicator functions1 of {0}, Bv
2,ε, B1,η , and Rµ,µ̄, we

rewrite Prob. (7) into an equivalent form:

min
u,w1,w2,s
y1,y2,y3

ω∥w1∥1,2 + ∥w2∥1,2 + ιRµ,µ̄
(u) + ιB1,η

(s)

+ ι{0}(y1) + ι{0}(y2) + ιBv
2,ε

(y3)

s.t.


y1 = Du− L⊤w1,

y2 = DDsu− L⊤w2,

y3 = u+ s.

(11)

Prob. (11) can be solved by P-PDS [24]. We show the detailed
algorithm in Alg. 1. The proximity operators2 of ιRµ,µ̄

, ι{0},

1The indicator function of a closed convex set C is defined by ιC(x) := 0,
if x ∈ C; ∞, otherwise.

2The proximity operator of index γ > 0 of a proper lower semicontinuous
convex function f is defined by proxγf (x) := argminy f(y)+ 1

2γ
∥x−y∥22.

The proximity operator of ιC is the projection onto C, given by proxιC (x) =
argmin
y∈C

∥y − x∥2 := PC(x).

Algorithm 1 P-PDS-based solver for (11)

Input: u(0), s(0),w
(0)
1 ,w

(0)
2 ,y

(0)
1 ,y

(0)
2 ,y

(0)
3

Output: u(t)

1: while A stopping criterion is not satisfied do
2: u(t+1) ←

PRµ,µ̄

(
u(t) − γu

(
D⊤y

(t)
1 +D⊤

s D
⊤y

(t)
2 + y

(t)
3

))
3: s(t+1) ← PB1,η

(
s(t) − γsy

(t)
3

)
4: w

(t+1)
1 ← proxγsω,∥·∥1,2

(
w

(t)
1 + γw1

Ly
(t)
1

)
5: w

(t+1)
2 ← proxγs,∥·∥1,2

(
w

(t)
2 + γw2

Ly
(t)
2

)
6: u

′ ← 2u(t+1) − u(t);
7: s

′ ← 2s(t+1) − s(t);
8: w

′

1 ← 2w
(t+1)
1 −w

(t)
1 ;

9: w
′

2 ← 2w
(t+1)
2 −w

(t)
2 ;

10: y
(t+1)
1 ← y

(t)
1 + γy1

(
Du

′ − L⊤w
′

1

)
11: y

(t+1)
2 ← y

(t)
2 + γy2

(
DDsu

′ − L⊤w
′

2

)
12: y

′

3 ← y
(t)
3 + γy3

(
u

′
+ s

′
)

;

13: y
(t+1)
3 ← y

′

3 − γy3
PBv

2,ε

(
1

γy3
y

′

3

)
;

14: t← t+ 1;
15: end while

ιBv
2,ε

, and ∥ · ∥1,2 are calculated by

[proxγιRµ,µ̄
(x)]i = [PRµ,µ̄(x)]i =


µ, if xi < µ,

µ̄, if xi > µ̄,

xi, otherwise,
(12)

proxγι{0}
(x) = 0, (13)

proxγιBv
2,ε

(x) = PBv
2,ε

(x) =

{
x, if x ∈ Bv

2,ε,

v + ε(x−v)
∥x−v∥2

, otherwise,
(14)

[proxγ∥·∥1,2
(x)]i = max

1− γ√
x2
dN+ĩ

+ x2
(d+1)N+ĩ

, 0

xi,

(15)

where ĩ := ((i−1) mod N)+1, d := (i− ĩ)/N . The sum of
x2
dN+ĩ

and x2
(d+1)N+ĩ

is intended to be the sum of elements in
vertical and horizontal directions. The proximity operators of
ιB1,η (s) can be efficiently computed by a fast ℓ1-ball projection
algorithm [33].

We set the stepsize parameters as γu = 1
41 , γs = 1, γw1 =

γw2
= 1

4 , γy1
= γy2

= γy3
= 1

4 according to P-PDS [25].

IV. EXPERIMENTS

To demonstrate the effectiveness of RISSTV, we conducted
HS image denoising experiments where we compared RISSTV
with three types of state-of-the-art methods. The first are TV-
based methods: SSTV [15], HSSTV [19], and l0-l1HTV [20].
The second are tensor-based methods: Decomposable Nonlocal
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TABLE I
MPSNRS AND MSSIMS OF ALL DENOISING RESULTS.

Image (σ, ps) TDL [34] ITSReg [35] SSTV [18] HSSTV1 [19] HSSTV2 [19] l0-l1HTV [20] LRTDTV [17] RISSTV

Jasper (0.05, 0.05) MPSNR 21.09 31.65 38.39 38.71 38.36 38.41 37.85 38.82
Ridge MSSIM 0.7999 0.8577 0.9475 0.9567 0.9535 0.9463 0.9544 0.9540

(0.1, 0.1) MPSNR 19.85 27.86 34.03 34.22 33.94 34.29 34.63 34.68
MSSIM 0.6917 0.7694 0.8923 0.9021 0.9005 0.8928 0.9086 0.9149

PaviaU (0.05, 0.05) MPSNR 22.03 31.38 38.98 39.20 39.07 39.08 34.30 39.41
MSSIM 0.8159 0.8734 0.9585 0.9638 0.9616 0.9587 0.9006 0.9634

(0.1, 0.1) MPSNR 20.33 27.29 32.76 33.37 33.50 33.20 32.31 34.04
MSSIM 0.7372 0.7969 0.8687 0.8847 0.8859 0.8807 0.8483 0.9044

MPSNR 16.86 21.09 31.65 38.39 38.71 38.36 38.41 37.85 38.82
MSSIM 0.2974 0.7999 0.8577 0.9475 0.9567 0.9535 0.9463 0.9544 0.9540

MPSNR 13.40 20.33 27.29 32.76 33.37 33.50 33.20 32.31 34.04
MSSIM 0.1260 0.7362 0.7969 0.8687 0.8847 0.8859 0.8807 0.8483 0.9044

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 1. Denoising results. The first and second rows are the results on Jasper Ridge with σ = 0.05, ps = 0.05 and the third and fourth rows are the results
on PaviaU with σ = 0.1, ps = 0.1. (a) Ground-truth. (b) Observed noisy image. (c) TDL. (d) ITSReg. (e) SSTV. (f) HSSTV1. (g) HSSTV2. (h) l0-l1HTV. (i)
LRTDTV. (j) RISSTV (ours).

Tensor Dictionary Learning (TDL) [34] and Intrinsic Tensor
Sparsity Regularization (ITSReg) [35]. The third is a TV-
tensor hybrid method, i.e., Total Variation-Regularized Low-
Rank Tensor Decomposition (LRTDTV) [17]. Here, HSSTV
with ℓ1-norm and mixed ℓ1,2-norm are denoted by HSSTV1
and HSSTV2, respectively. We used Jasper Ridge3 with size
100×100×198 and Pavia University4 (PaviaU) cropped to size
140× 140× 98 as ground-truth HS images. All the intensities
were normalized to within the range [0, 1]. Noisy HSIs were
generated based on (6). In this experiment, we simulated two
cases. The first is the low-intensity noise case, where we set
the standard deviation of the Gaussian noise σ to 0.05 and
the ratio of salt-and-paper noise ps to 0.05. The second is the
high-intensity noise case, where we set σ to 0.1 and ps to 0.1.

For a fair comparison, we replaced RISSTV in (7) with
TV-based methods, i.e., SSTV, HSSTV1, HSSTV2, l0-l1HTV,

3https://rslab.ut.ac.ir/data
4https://www.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing

Scenes

respectively, and solved each problem by P-PDS. For TDL,
ITSReg, and LRTDTV, we used the implementation published
by the authors. In RISSTV, we fixed ω to 0.01 for all images
and conditions. The radiuses η in (9) and ε in (10) were set
to 0.93Nps

2 and 0.93
√
σ2N(1− ps), respectively. We set the

stopping criterion of Alg. 1 to ∥u(t+1)−u(t)∥2

∥u(t)∥2
< 1.0 × 10−5.

For quality measures, we employed the mean peak signal-to-
noise ratio (MPSNR) [dB]: 1

N3

∑N3

i=1 10 log10(N1N2/∥ui −
ūi∥22), and the mean structural similarity index (MSSIM) [36]:
1
N3

∑N3

i=1 SSIM(ui, ūi), where ui is the i-th band of u. where
ui and ūi are the i-th band of the ground true HS image
u and the estimated HS image ū, respectively. Generally,
higher MPSNR and MSSIM values are corresponding to better
denoising performances.

Table I shows MPSNR [dB] and MSSIM of all the denoising
results for each method. The best MPSNR and MSSIM values
are highlighted in bold. Our RISSTV performed better than
all other methods in most cases. Especially for MPSNR, our
RISSTV is superior to all the other methods in all cases.
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The first and second rows in Fig. 1 depict the denoising
results at σ = 0.05 and ps = 0.05 in Jasper Ridge with the
99th band, and the third and fourth rows those at σ = 0.1 and
ps = 0.1 in PaviaU with the 20th band. The images in the
second and fourth rows show the absolute differences between
the original images and each restored image in each result,
multiplied by eight for visibility.5

In images (c) and (d) restored with the tensor-based methods
TDL and ITSReg, respectively, edges and textures are restored
to some extent, but the mean pixel values are significantly off
due to spectral distortion. More detailed structure is preserved
in the restored images by SSTV in (e) and the existing TV-
based methods (HSSTV1, HSSTV2, l0-l1HTV, LRTDTV) in
(f), (g), (h), and (i) than those by TDL and ITSReg. However,
in the case of higher noise intensity, noise and artifacts remain
in the restored image by the methods using only the second-
order spatio-spectral differences, i.e., SSTV, l0-l1HTV, and
LRTDTV in (e), (h), and (i). The images in (f) and (g) restored
by HSSTV1 and HSSTV2 can remove noise more effectively
than these methods, but many edges and textures are present
in the difference images. On the other hand, as shown in
(j), RISSTV achieves the highest restoration performance. In
addition, in the enlarged area of the difference images between
the ground-truth images and the restored images by RISSTV,
edges and textures, oblique edges, do not appear much. These
results suggest that RISSTV can remove noise while retaining
edges and textures with high accuracy. This may be due to the
fact that RISSTV has the rotation-invariant property.

V. CONCLUSION

We proposed a new HS image regularization model, named
RISSTV, for HS image denoising. RISSTV is designed by
combining the TVs of the spatial/spatio-spectral differences
and making them rotation-invariant, leading to a powerful
regularization model that fully recovers the spatio-spectral
structures, including round structures and oblique edges, in
the target HS image. The HS image denoising problem using
RISSTV is formulated as a convex optimization problem
and efficiently solved by an efficient algorithm based on a
preconditioned primal-dual splitting method. The experimental
results on mixed noise removal illustrate the advantage of
RISSTV over several existing HS image regularization models.
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