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Abstract—We propose a method for simultaneously estimating
the rotation angle and anisotropic scaling rates. Conventional
watermarking methods are robust against non-geometric attacks.
However, these methods need to synchronize to resist geometric
attacks. Invariant features, such as SIFT, have been used for
the synchronization. In this paper, we focus on pilot signals for
estimating geometric attacks. By embedding a grid-shaped pilot
signal and detecting its change, individual attacks on the scaling
rate and rotation angle can be estimated. However, it has been
difficult to estimate combined attacks. Our proposed method for
estimating rotation angle and anisotropic scaling rates uses Radon
coefficients. A Radon transform is applied to the signal obtained
by QIM from a stego image. Periodic strong peaks appear in the
coefficients at rotation angles. The period of the peaks is also
calculated. From the rotation angle and the period at which the
peaks appear, the rotation angle and the anisotropic scaling rates
can be estimated. Computational results show that the rotation
angle can be successfully estimated with an absolute error below
0.2 degrees. In more than half of the results, the absolute error
of the anisotropic scaling rates was almost zero.

I. INTRODUCTION

Unauthorized use of digital content posted on social media
has become a problem. Digital watermarking [1] has been
focused on as one of the technologies to protect digital content.
Digital watermarking is a technique for secretly embedding
other information in digital content. The embedded information
is called a watermark. An image in which the watermark is
embedded is called a stego image. It is possible to manage
content and detect unauthorized use by embedding user IDs and
other information in distributed images. However, illegal users
often alter distributed images by scaling, rotating, cropping,
etc. They also compress the images when they are saved. This
leads to image degradation. These alterations (attacks) to stego
images can cause the watermark to disappear or make it difficult
to detect the watermark. Thus, the watermark needs to be robust
against various attacks.

There are two main types of attacks on images: non-
geometric attacks and geometric attacks. Non-geometric attacks,
such as JPEG compression and noise addition, change the pixel
values. The watermark is also degraded when a non-geometric
attack is applied to an image. As a result, the watermark
cannot be extracted. Methods robust against non-geometric
attacks include those using error-correcting code [2] and spread
spectrum [3], [4]. By applying redundancy to the watermark,
these methods can correct errors in degraded watermarks.

In contrast, geometric attacks such as scaling, rotating,
cropping, etc. change the position of pixels. It is necessary

to detect the embedding position because a geometric attack
on an image changes the coordinates at which the watermark
is embedded. As a method robust against geometric attacks,
some watermarking methods using the SIFT feature [5], [6],
[7], [8], have been proposed. By embedding watermarking
around multiple SIFT features, it is possible to improve the
resistance to geometric attacks. An embedding method that is
robust to linear transformations by normalizing images to a
universal shape was proposed by P. Dong et al. [9]. However,
both the image and the watermark itself can be degraded by
the normalization.

Many conventional methods require knowledge on the
parameters of inverse transformation or involve computationally
expensive processes such as brute force against geometric
attacks. As a result, these methods lack sufficient tolerance
to unknown geometric attacks. If we could estimate the type
and strength of geometric attacks, we could detect the exact
location of the watermark, reducing the number of watermarking
errors. For this reason, we have focused on the framework of
communication channel estimation in order to estimate the
type and strength of the attacks [10]. There is a method that
uses a signal different from the message, called a pilot signal,
for communication channel estimation. When a pilot signal
is transmitted, it is degraded by the communication channel,
so the degree of degradation can be used to estimate the
parameters of the channel. By introducing the pilot signal
into the watermarking scheme, pilot signal degradation can be
used to estimate the attack parameters.

A watermarking method using a pilot signal was proposed by
Su et al. [11]. In their method, a pilot signal was embedded to
detect the locations of embedding regions around SIFT feature
points. The direction of the embedding regions was determined
using the gradient of the SIFT features. The watermarks were
embedded into the rotated embedding regions. This method is
robust with respect to the change in coordinates. However, it is
necessary to rotate the regions in the gradient direction during
watermark embedding and extraction. Since these processes are
also geometric attacks, they degrade the watermark and image
quality.

A new approach is needed to estimate the type and intensity
of geometric attacks. To estimate attacks from pilot signals, it
is necessary to determine the appropriate embedding method
and the shape of the signal for each attack. Since there are
different types of attacks, it is necessary to generate signals
and develop extraction methods for each type. In our previous



work, we developed a method for estimating attacks with the
use of a grid-shaped pilot signal. We showed that individual
attacks, i.e., scaling and rotation attacks, can be estimated using
the pilot signal [12]. The watermark could also be estimated
from the estimated scaling rate [13]. However, it is difficult to
estimate these combined attacks.

As an example of estimating a simple composite attack, we
proposed a method for estimating the rotation angle and scaling
rate simultaneously using the Radon transform [10]. The Radon
transform is an integral transform that line integrates an image
from different angles. When a grid-shaped pilot signal is Radon
transformed, strong intensities appear in the Radon coefficients
due to line integration at the same angle as the grid. Therefore,
by determining the angle at which strong intensities appear in
the Radon coefficient, the rotation angle can be estimated. Also,
these strong intensities appear with the same period as the grid
interval. Thus, the scaling rate can be estimated by detecting
this interval and comparing it with the original grid interval.
However, this method is only effective for attack detection
when the horizontal and vertical scaling rates are equal. When
anisotropic scaling is performed on an image, the orthogonality
of the grid lines is lost, so the anisotropic scaling rate and the
rotation angle cannot be estimated simultaneously. In this paper,
we propose a method for simultaneously estimating the rotation
angle and the anisotropic scaling rate. We theoretically derive
equations for estimating these attack parameters from Radon
coefficients. We also validate these equations with computer
simulations.

This paper is organized as follows. Section II outlines the
method for estimating the rotation angle and anisotropic scaling
rate using the pilot signal. Theoretical equations for the rotation
angle and the grid interval estimated from the Radon coefficient
are derived. Section III describes the results of computer
simulations to verify the theoretical equations, and Sec. IV
concludes our study.

II. GEOMETRIC TRANSFORMATIONS AND RADON
TRANSFORM

In the proposed method, a grid-shaped pilot signal is
embedded in the original image. By detecting changes in
the signal, geometric attacks such as rotation and anisotropic
scaling are estimated. From the Radon coefficients obtained by
Radon transform of the pilot signal obtained from the attacked
image, the rotation angle and the scaling rate are estimated.
The estimation procedure is carried out as follows. (i) The
pilot signal is extracted from the attacked image. (ii) The pilot
signal is transformed by Radon transform to obtain the detection
angle and the detection interval. (iii) The rotation angle and
scaling rate are estimated using both the detection angle and
the detection interval.

The assumed attack combinations are rotation and anisotropic
scaling. Let Tθ be the rotation matrix when the rotation angle
is θ. Let TS = diag(Sx, Sy) be the scaling matrix when the
scaling rate on the x-axis is Sx and the scaling rate on the
y-axis is Sy. The transformation matrix when the image is

Fig. 1. Pilot signal instead of watermark. Note that pilot signal p ∈ 0, 1 is
embedded in pixel value U(i, j).

scaled and then rotated is given by

TθTS =

(
Sx cos θ −Sy sin θ
Sx sin θ Sy cos θ

)
. (1)

The transformation matrix when the image is rotated and then
scaled is given by

TSTθ =

(
Sx cos θ −Sx sin θ
Sy sin θ Sy cos θ

)
. (2)

A. Pilot signal

The image is decomposed into a YUV color space. A pilot
signal is embedded into the U-component of the image using
QIM [14]. The shape of the pilot signal is a grid as shown
in Figure 1 and consists of two directional lines, one at an
angle of ψh = 0 to the x-axis and the other at an angle of
ψv = π/2. The interval between the lines of the same color
is set to γ = 100 pixels. The width of the lines is set to 5
pixels. The values on the lines take on two values. The values
0 and 1 are embedded in the pilot signals of the blue and red
lines, respectively. The purple area, which is the intersection
of the two types of lines, is embedded with alternately equal
percentages of 1 and 0. No changes are applied to the regions
other than the pilot signal. This means that during detection,
image-specific components are detected in the regions where
no pilot signal is embedded.

B. Extraction of pilot signals and Radon transformation

First, the stego image is decomposed into the YUV color
space. From the U-component image U ′(x, y), a binary signal
is obtained with QIM [14]. This signal is called the extracted
signal p̂(x, y). Applying the Radon transform to the extracted
signal p̂(x, y), the slope of lines in the signal can be detected
as a feature. Let us consider the case where only rotation is
applied to the image. Let ϕ1 and ϕ2 be the detection angles
obtained from the Radon coefficients when the image is rotated
by the angle 0 ≤ θ < π/2. Figure 2 shows a schematic diagram
of the Radon coefficients of the pilot signal extracted from
the rotated image. The vertical axis is the projection position,
and the horizontal axis is the projection angle. When a grid-
shaped pilot signal, consisting of straight lines in two orthogonal
directions, is Radon-transformed, strong intensities appear at
two angles, ϕ1 and ϕ2 (ϕ1 < ϕ2), as shown in the figure.

The method used to estimate the detection angle and detection
interval from the Radon coefficients is an adapted version of the
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Fig. 2. Schematic diagram of Radon coefficients

method in our previous study [10]. Here, we briefly describe
how to detect strong intensities from Radon coefficients and
calculate detection intervals. Strong intensities appear at equal
intervals at detection angles ϕ1 and ϕ2. From the variance of
the Radon coefficients for each projection angle, we can see
that the variance is large at the projection angles ϕ1 and ϕ2.
Therefore, the detection angles ϕ1 and ϕ2 can be obtained by
detecting the peaks from the variance of the Radon coefficient
at each projection angle. At angles ϕ1 and ϕ2, there are strong
periodic intensities in the Radon coefficients. Each interval
is called a detection interval, denoted by γ1 and γ2. The
Radon coefficients contain not only the pilot signal but also
components of the original image. Therefore, it is difficult to
determine the detection interval automatically. After calculating
the autocorrelation of the Radon coefficients, the detection
interval is obtained by using DFT on the autocorrelation
coefficients. The grid interval of the pilot signal coincides
with the detection interval only in the case of rotation. The
relationship between the detection angles ϕ1, ϕ2 and the rotation
angle θ is derived theoretically in this section.

In the Radon transform, the projection plane is rotated
clockwise from the y-axis in order to detect components
perpendicular to the projection plane. This means that the
projection plane of the Radon transform is shifted by π/2. In
contrast, the geometric transform rotates counterclockwise. Note
that due to the difference in the direction of rotation between
the geometric and Radon transform, the angle of rotation on
the Radon coefficients is represented as −θ. Let ϕh and ϕv be
the angles after θ rotation of the horizontal component ψh = 0
and the vertical component ψv = π/2 of the pilot signal. They
are given by

ϕh =
π

2
− θ + ψh =

π

2
− θ mod π, (3)

ϕv = π − θ + ψv =
π

2
− θ mod π. (4)

Thus, the estimated rotation angle θ̂ is obtained by

θ̂ =
1

2

(
ϕh + ϕv −

3π

2

)
. (5)

Since the pilot signal is rotationally symmetric, rotations by
whole integer multiples of π/2 are indistinguishable.

C. Combined attack of rotation and anisotropic scaling

As expressed in (1) and (2), when an image is attacked by
rotation and anisotropic scaling, the results depend on the order
of the attacks. When the image is rotated after anisotropic
scaling, the rotation angle θ̂ is given by (5) since equations (3)
and (4) hold. The scaling rates can be estimated by using the
detection intervals γ1 and γ2 on the detection angles ϕ1 and
ϕ2. When the horizontal component ϕh of the pilot signal is
detected as the detection angle ϕ1, the detection interval γ1 on
ϕ1 corresponds to the grid interval of the vertical component ψv .
Therefore, when the original grid interval is γ, the estimated
scaling rates Ŝx and Ŝy are calculated by

Ŝx =
γ2
γ
, Ŝy =

γ1
γ
. (6)

On the other hand, when anisotropic scaling is performed
after image rotation, the orthogonality of the grid lines is
broken, and Eqs. (3) and (4) do not hold. In this paper, we
derive an estimation method for this case. Let us consider the
case where the rotation angle is between 0 and π/2. In this
case, the detection angles for the horizontal component ψh

and the vertical component ψv are ϕh < ϕv, so ϕh = ϕ1 and
ϕv = ϕ2. The derivation is described in Appendix A. From
(25), the tangent of the estimated rotation angle θ̂ is given by

tan θ̂ = sgn

(
1

tanϕ1

)√
− tanϕ2
tanϕ1

, (7)

where sgn(x) is the sign function. The actual angle of rotation θ
is between 0 and 2π. Therefore, there are two possible solutions
to (7). Also, the estimated scaling rates Ŝx and Ŝy are given
by

Ŝx =

√
γ1γ2 tanϕ1 tan θ̂

γ2 sin |ϕ2 − ϕ1|
, (8)

Ŝy =

√
γ1γ2

γ2 tanϕ1 tan θ̂ sin |ϕ2 − ϕ1|
. (9)

D. In case of right angles

If the detection angle ϕ1 is 0 or π, then tanϕ1 = 0.
Therefore, (7) is not computable. Similarly, tan θ̂ in (9) includes
tanϕ2. Therefore, if the detection angle ϕ2 is 0 or π, then
tanϕ2 = 0. Therefore, (9) is not computable. In this paper,
rotation and anisotropic scaling are applied to the image once
each. As a result, the detection angle ϕ1 or ϕ2 becomes zero
only if the rotation angle satisfies θ = nπ/2, n = 0, 1, 2, 3.
Therefore, when the detection angle ϕ1 or ϕ2 is 0 or π, the
estimated rotation angle and the estimated scaling rates are
obtained by (5) as in the case of rotation after anisotropic
scaling of the image. The estimated scaling rates are given by
(6).

III. COMPUTER SIMULATION

We derived equations to estimate the attack parameters by
detecting the pilot signal from the Radon coefficients. This
section demonstrates that our theoretical equations are correct.
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Fig. 3. Absolute error |θ̂− θ| for each angle: Orange line represents medians
of results.

Specifically, we evaluated our method for estimating the rotation
angle and the anisotropic scaling rates with absolute error when
the stego image was rotated and then anisotropically scaled.

A. Experimental conditions

The pilot signal was embedded in the U-component of six
IHC standard images of 4608×3456 pixels [15]. We considered
attacks in which the stego images were rotated, anisotropically
scaled, and then cropped. The angles of rotation were set to
0, 10, 20, · · · , 90 degrees. In addition, the scaling rate for the
x-axis Sx was set to 1, and the scaling rates for the y-axis
were assumed to be Sy = 0.5, 0.6, · · · , 1.5. Since the Radon
transform is performed on a square surface, the stego images
were cropped to a size of 1080× 1080 pixels from the center
of the image after the geometric transformation.

B. Experimental results

First, we evaluated the estimated rotation angle θ̂ in terms of
the absolute error |θ̂− θ|. Since our pilot signal is grid-shaped,
four candidates are detected as estimated rotation angles. These
are indistinguishable. Therefore, the angle closest to the true
rotation angle was treated as the estimated rotation angle. There
were 11× 6 = 66 results since there were 11 different scaling
rates in the y-axis direction. Figure 3 shows their box-and-
whisker plots. The horizontal axis is the rotation angle θ. The
vertical axis is the absolute error |θ̂ − θ|. The orange line
represents the medians of the results. All rotation angles were
successfully estimated with an absolute error of less than 0.2
degrees.

Next, the estimated scaling rates were evaluated. The absolute
errors of the estimated scaling rates Ŝx and Ŝy are shown in
Figure 4 as box-and-whisker plots. The horizontal axis is the
scaling rate Sy. Now remember that we set Sx = 1.0. The
vertical axis represents the absolute errors of (a) the estimated
scaling rates Ŝx and (b) Ŝy. The orange line represents their
medians. For all scaling rates, the medians were close to zero.
However, we found that many results had a large absolute error
for scaling rates greater than 1.0.

We considered the reason why the estimation errors are more
frequent when the scaling rate is large. From our previous
study [10], we know that the larger the scaling rate, the more
likely it is that the grid interval γ1 and γ2 will fail detection.
This is due to the fact that when a scaled image is cropped
to a given size, the larger the scaling rate, the fewer the
number of grid lines within the cropped image. In addition,
if the components of the original image are not smooth, the
components may cause the peak to not be detected, resulting
in incorrect period estimation. In summary, the reason why the
absolute error of the scaling rate was large, while the estimated
rotation angle was calculated accurately, is due to the inaccurate
detection of the grid intervals γ1 and γ2.

IV. CONCLUSION

Blind watermarking methods need to be robust against geo-
metric attacks. Methods with redundant watermark embedding
are ineffective against geometric attacks. Therefore, methods
that assume geometric attacks by using SIFT feature points and
the polar coordinate system have been proposed. We proposed
a grid-shaped pilot signal for estimating geometric attacks. So
far, we have been successful in estimating a single attack, either
a rotational attack or an isotropic scaling attack [10]. The angle
and interval of the grid can be obtained by applying the Radon
transform to the pilot signal extracted from the image.

In this paper, we proposed a method for estimating both the
rotation angle and the anisotropic scaling rates from images
attacked by a combined rotation attack and anisotropic scaling
attack. We theoretically derived the estimated rotation angle
and the estimated scaling rates from the Radon coefficients and
the geometric transformation matrix. Using both the detection
angles and the detection intervals obtained from the Radon
coefficients, the estimated rotation angle and the estimated
scaling rates can be calculated. To demonstrate the correctness
of the estimators obtained from our theory, we validated them in
computer simulations. In particular, we verified the accuracy of
the estimators for the case of anisotropic scaling after rotating
stego images. As a result, it was possible to estimate the
rotation angle with an absolute error of less than 0.2 degrees.
The median of the estimates was zero for the estimation of
anisotropic scaling. That is, the absolute error was zero for more
than half of the results. In particular, the estimation was almost
accurate when the scaling rate was less than 1. In contrast,
when the scaling rate was greater than 1, the number of cases
with large absolute errors increased. This is due to inaccuracies
in the estimates of the detection intervals γ1 and γ2.

The proposed method could estimate the combined rotation
and scaling attacks. However, the scaling rate needs to be
estimated more accurately. It is necessary to improve the
detection of peaks from the Radon coefficients to accurately
detect the detection intervals γ1 and γ2. Improving the detection
algorithm and estimating general geometric transformations
including shear is our future work.
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(a) Scaling rate in x-axis direction, Ŝx (b) Scaling rate in y-axis direction, Ŝy

Fig. 4. Absolute error of estimated scaling rates
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APPENDIX

A. Estimation of rotation angle

We will consider the case where the rotation angle θ is in
0 ≤ θ < π/2. The detection angles obtained from the Radon
coefficients are ϕ1 and ϕ2 (ϕ1 < ϕ2). The projective plane
of the Radon transformation is shifted by π/2. The direction
of rotation is opposite that of the rotation transformation. Let
A′(xa, ya), B′(xb, yb), and C ′(xc, yc) be points A(γ, 0) on the
horizontal component ϕh of the pilot signal, B(0, γ) on the
vertical component ϕv and C(γ, γ) after the transformation.
Let α be the angle between the x-axis and line OA′. Let β be
the angle between the x-axis and line OB′.

Figure 5 shows these angles α, β, ϕ1, and ϕ2. The angles α
and β are represented by

α =
π

2
− ϕ1, β =

3π

2
− ϕ2. (10)

The tangent of these angles is therefore given by

tanα =
1

tanϕ1
, tanβ = − 1

tanϕ2
. (11)

Therefore, the angle ̸ A′OB′ = |β−α| between line OA′ and
line OB′ is given by

|β − α| = |π + ϕ1 − ϕ2|. (12)

Point A′ projected from point A is given by(
xa
ya

)
= TθTS

(
γ
0

)
=

(
γSx cos θ
γSy sin θ

)
. (13)
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Fig. 5. Relationship between angles α, β, ϕ1, and ϕ2.

Therefore, the tangent of the slope of line OA′, tanα, is given
by

tanα =
Sy

Sx
tan θ. (14)

Similarly, point B′ projected from point B is given by(
xb
yb

)
= TθTS

(
0
γ

)
=

(
−γSxγ sin θ
γSyγ cos θ

)
. (15)

Therefore, the tangent of the slope of line OB′, tanβ, is given
by

tanβ =
Sy

Sx

(
− 1

tan θ

)
. (16)

From (14) and (16), we obtain

− tanα

tanβ
= − tanϕ2

tanϕ1
= tan2 θ. (17)

The signs of the tangents of the two detection angles ϕ1 and
ϕ2 are always different, even if the orthogonal grids are rotated
and scaled anisotropically. Therefore, the sign of tangent tan θ̂
of the estimated rotation angle and that of tangent tanα of the
detection angle are always the same. Therefore, from (11), the
tangent of the estimated rotation angle θ̂ is given by

tan θ̂ = sgn

(
1

tanϕ1

)√
− tanϕ2
tanϕ1

, (18)

where sgn(x) is the sign function.

B. Estimation of scaling rates

Let us first consider the area Q of the quadrilateral OA′C ′B′

to find the scaling rates. Since the quadrangle OA′C ′B′ is a
parallelogram, the area of the parallelogram is expressed as

Q = |OA′||OB′| sin |β − α|. (19)

The parallelogram OA′C ′B′ and the grid intervals γ1, γ2 are
shown in Figure 6. The distance between line OA′ and line
B′C ′ is represented by the grid interval γ1, and the distance
between line OB′ and line A′C ′ is represented by the grid
interval γ2. The lengths of edges |OA′| and |OB′| are therefore
given by

|OA′| =
γ2

sin |β − α|
, |OB′| = γ2

sin |β − α|
. (20)

Fig. 6. Relationship between quadrilateral OA′C′B′ and grid intervals
γ1, γ2.

From (19), the area Q is expressed as

Q =
γ1γ2

sin |β − α|
. (21)

Next, we calculate the area Q of the parallelogram in a
different way, focusing on (13) and (15). From (12), sin |β − α|
can be expanded as

sin |β − α| = sin |π + ϕ1 − ϕ2| (22)
= sin |ϕ2 − ϕ1| (23)
= sinϕ2 cosϕ1 − cosϕ2 sinϕ1 (24)

=
yb

|OB′|
· xa
|OA′|

− xb
|OB′|

· ya
|OA′|

(25)

=
γ2SxSy

|OA′||OB′|
. (26)

Therefore, from (19), the area Q is given as

Q = |OA′||OB′| · γ2SxSy

|OA′||OB′|
= SxSyγ

2. (27)

This equation states that the area γ2 before the transformation
is equal to the area multiplied by SxSy after the transformation
at the anisotropic scaling rates.

Finally, from (21) and (27) we obtain

SxSy =
γ1γ2

γ2 sin |ϕ2 − ϕ1|
. (28)

Using (11) and (14), we obtain

Sy =
Sx

tanϕ1 tan θ
. (29)

Substituting this into (28), the estimated scaling rate Ŝx is
given by

Ŝx =

√
γ1γ2 tanϕ1 tan θ̂

γ2 sin |ϕ2 − ϕ1|
. (30)

Similarly, the estimated scaling rate Ŝy is given by

Ŝy =

√
γ1γ2

γ2 tanϕ1 tan θ̂ sin |ϕ2 − ϕ1|
. (31)
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