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Abstract—The advancement of Automatic Pronunciation As-
sessment (APA) systems has been significantly improved by
Self-supervised Learning (SSL) models. However, despite these
performance gains, there remains a lack of systematic research on
effective utilization of SSL models and the explainability of their
behavior in APA. This study aims to evaluate pronunciation with
high accuracy using SSL models and to provide explanations for
the scoring outcomes. To achieve this, we fine-tune various SSL
models using multiple strategies, comparing their performance
through extrinsic analysis to identify the key factors influencing
performance improvements. Furthermore, intrinsic analysis is
conducted using Principal Component Analysis (PCA) to gain
insights into the model’s scoring patterns. Extrinsic analysis
highlights the importance of strategic fine-tuning and acoustic
similarity between fine-tuning and pre-training datasets. Intrinsic
analysis reveals that different SSL models focus on distinct
pronunciation features, with the Wav2Vec2.0 model capturing
more advantageous information for APA. This study presents
the first in-depth analysis of SSL models in APA, proposing
a novel intrinsic analysis method based on feature distribution
manifolds. We provide model-specific fine-tuning guidelines for
APA tasks and recommend appropriate SSL models based on spe-
cific pronunciation assessment goals. This research significantly
contributes to the future development of explainable APA systems
based on SSL models.

I. INTRODUCTION

Recent Automatic Pronunciation Assessment (APA) re-
search has focused on improving performance using the
Speechocean762 dataset [1]. Advancements have been made
by incorporating word and sentence-level features alongside
traditional phoneme-level features, and by introducing multi-
aspect scoring systems that evaluate fluency, prosody, and
completeness through parallel structure models that simulta-
neously predict all scores [2]. Further improvements include
hierarchically enhancing the parallel model structure to effec-
tively capture the linguistic hierarchy of pronunciation [3] and
implementing L1-L2 aware word-level modeling that reflects
Chinese tonal characteristics [4]. Recent integration of Self-
Supervised Learning (SSL) model features has significantly
enhanced performance [4]–[8]. In terms of the Pearson Corre-
lation Coefficient (PCC) metric, the integration of SSL models
has had the most significant impact on enhancing perfor-
mance [4], highlighting their substantial capabilities for APA.
However, research fully exploiting SSL features’ potential in
APA remains insufficient, with current approaches facing three
primary limitations.

Firstly, existing studies have primarily relied on Automatic
Speech Recognition (ASR) tasks, overlooking APA-specific
characteristics. Traditional APA systems have utilized ASR
results to predict pronunciation scores, and SSL-based research
has also followed this approach by either fine-tuning models
for speech or phoneme recognition tasks [5], [6], or extracting
general features without fine-tuning [8]. However, optimizing
SSL features for APA requires score-based fine-tuning spe-
cific to the APA task, rather than relying on ASR-oriented
approaches.

Secondly, recent studies often employ the latest SSL models
without comprehensive evaluation. Despite each SSL model’s
distinctive processing of speech data due to varying training
datasets and algorithms, studies have used Wav2Vec2.0 XLSR
without comparison [4] or conducted limited experiments with
Wav2Vec2.0 and HuBERT [5]. A more thorough approach with
diverse pre-trained models and fine-tuning methods is needed
to identify the optimal SSL model for APA.

Thirdly, ensuring the reliability of APA systems requires
not only accurate evaluation but also the ability to provide
justification for assessment scores. Unlike traditional systems
with manually designed features [9], SSL models’ black-box
nature hinders understanding of their evaluation mechanisms.
While some studies have analyzed layer-wise representations
of ASR fine-tuned models [5] or extracted frame-level fea-
tures to assess Wav2Vec2.0’s phoneme discrimination on non-
native datasets [7], these analyses remain relatively superficial.
Moreover, combining SSL with other features [4] further
complicates identifying performance-influencing elements.

In this study, we address these limitations by conducting
diverse experiments to construct a high-accuracy APA model
and identifying performance-enhancing features via extrinsic
analysis. Motivated by recent NLP studies which analyze
word embedding structures [10], [11], we utilize Principal
Component Analysis (PCA) for our intrinsic analysis. By
examining the feature distribution manifolds constructed from
PCA on embedding vectors, our intrinsic analysis provides
insights into the model’s scoring mechanism.

II. METHOD

A. Score-based Fine-Tuning of SSL models

This study proposes a score-based fine-tuning approach to
optimize SSL models for APA tasks. Fig. 1 provides the
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Fig. 1. The overview diagram of the proposed method. (a) the fine-tuning process, (b) the extrinsic and intrinsic analysis of the fine-tuned models.

overview of our method, illustrating (a) the fine-tuning process
and (b) the subsequent extrinsic and intrinsic analysis. The
fine-tuning process involves adding a linear layer to the pre-
trained SSL encoder to output logits for four pronunciation
scores, with the model optimized using Mean Squared Er-
ror (MSE) loss between predicted and ground truth scores.
This approach ensures that the SSL model is optimized for
generating scores, thereby providing robust SSL feature-based
interpretability.

1) SSL Pre-Trained Models: We select Wav2Vec2.0 and
HuBERT for their superior performance in diverse speech tasks
[12], and include WavLM for its adaptability to non-ASR
tasks. Wav2Vec2.0 utilizes contrastive loss for masked speech
prediction, while HuBERT and WavLM employ cross-entropy
loss for pseudo-label sequences. Our study evaluates 12 pre-
trained models, each trained on distinct unlabeled datasets.

2) Fine-Tuning Strategies: We implement three fine-tuning
strategies to optimize the utilization of pre-trained knowledge:
a) Freezing CNN feature extractor (FE) parameters to preserve
the capabilities of the pre-trained models. b) Adding a Con-
nectionist Temporal Classification (CTC) head to the encoder
output to encode information favorable for ASR. c) Extracting
general audio features without using a CTC head. The first
strategy mitigates catastrophic forgetting [13] by freezing CNN
layers. This technique is particularly effective for large-scale
datasets like SSL models, but requires validation for APA tasks
due to its varied efficacy across different speech processing
domains [14]–[16]. The second and third strategies involve
introducing a CTC head, which automatically aligns speech
and text in ASR tasks, allowing a comparison of its efficacy
against general acoustic features for APA. While previous
studies have focused on ASR-based phonetic features, prosodic
features like rhythm and intonation, shown to be effective
in predicting fluency and prosody scores [17], may also be
beneficial and require evaluation.

B. Extrinsic and Intrinsic Analysis

This study employs extrinsic probing to compare the APA
performance of SSL models under various conditions, iden-
tifying optimal adaptation settings for each model. However,
models with similar PCC patterns may utilize different intrinsic
evaluation factors. For instance, models highly correlated with
fluency scores might prioritize prosodic or pitch information

differently. Extrinsic analysis alone is insufficient to elucidate
these intrinsic mechanisms. Therefore, we propose an intrinsic
probing methodology using Principal Component Analysis
(PCA), based on the manifold hypothesis [18]. PCA reduces
embedding vectors’ dimensionality while preserving key vari-
ability. Focusing on the last hidden state, presumed to contain
critical information for APA, as deep learning models typically
handle prediction in the final layer, we apply PCA to reduce
high-dimensional embedding vectors. By categorizing these
reduced features according to true pronunciation score labels
and analyzing their distribution patterns, we gain insights
into the inherent operational mechanisms of different model
configurations. This dual approach enables a comprehensive
understanding of SSL models in APA, revealing both perfor-
mance outcomes and underlying evaluation factors.

III. EXPERIMENTS

A. Dataset

This study employs Speechocean762 [1], a benchmark
dataset for APA comprising 5,000 English utterances from 250
non-native Mandarin speakers. Five experts manually evaluated
each utterance across phoneme, word, and sentence levels.
We focus on four utterance-level scores: accuracy, fluency,
prosodic, and total, each rated on a 0-10 scale.

B. Experimental Setup

This study examines Wav2Vec2.0, HuBERT, and WavLM,
selecting 12 pre-trained variants based on diverse unlabeled
datasets. These include Librispeech (LS) [19], comprising 960
hours of clean, clearly pronounced speech, and Libri-light (LL)
[19], offering an extensive 60k hours of less refined public
domain audiobook data. We also evaluate multilingual models
(XLSR [20] and XLS-R [21]), and fine-tune ASR-pretrained
models for APA to assess cross-task knowledge transfer. The
pre-trained models, sourced from Huggingface [22], are as
follows, with the number of parameters in brackets:

• wav2vec2-large: 960 hrs of LS [315.4M]
• wav2vec2-large-960h: ASR fine-tuned of wav2vec2-

large on 960 hrs of LS [315.4M]
• wav2vec2-large-lv60: 53k hrs of LL [315.4M]
• wav2vec2-large-xlsr-53: 56k hrs of 53 langs [315.4M]
• wav2vec2-xls-r-300m: 436k hrs of 128 langs [315.4M]
• hubert-large-ll60k: 60k hrs of LL [316.6M]



TABLE I
PCCS OF SSL FINETUNED MODELS. THE BEST MODEL AMONG THE THREE STRATEGIES FOR EACH ASPECT IS INDICATED IN BOLD, AND THE BEST MODEL

FOR EACH STRATEGY IS MARKED WITH AN ASTERISK(*).

Finetuned Model Accuracy Fluency Prosodic Total
Train all Freeze Train all Freeze Train all Freeze Train all Freeze

w/o CTC w/ CTC FE w/o CTC w/ CTC FE w/o CTC w/ CTC FE w/o CTC w/ CTC FE
w2v2-large 0.691 0.688 0.694 *0.794 0.787 0.782 *0.786 0.785 0.776 0.728 0.718 0.723
w2v2-large-960h *0.706 0.708 0.702 0.773 0.770 0.774 0.773 0.771 0.775 *0.734 0.729 0.727
w2v2-large-lv60 0.623 0.666 0.649 0.676 0.720 0.749 0.672 0.730 0.742 0.642 0.686 0.679
w2v2-xlsr-53 0.678 0.691 0.645 0.740 0.752 0.694 0.734 0.751 0.691 0.694 0.706 0.664
w2v2-xls-r-300m 0.633 0.649 0.661 0.693 0.705 0.735 0.681 0.692 0.727 0.647 0.663 0.679
hb-large-ll60k 0.620 0.616 0.698 0.692 0.687 0.763 0.683 0.681 0.760 0.633 0.633 0.716
hb-base-ls960 0.673 0.626 0.674 0.760 0.708 0.743 0.759 0.693 0.739 0.704 0.649 0.698
hb-xlarge-ll60k 0.631 0.686 0.702 0.704 0.759 0.786 0.693 0.761 0.783 0.646 0.705 0.728
hb-xlarge-ls960-ft 0.670 *0.719 *0.722 0.743 *0.797 *0.788 0.741 *0.788 *0.784 0.693 *0.734 *0.745
wlm-large 0.613 0.649 0.656 0.654 0.700 0.736 0.644 0.695 0.726 0.620 0.659 0.680
wlm-base-plus 0.603 0.636 0.653 0.686 0.701 0.716 0.681 0.696 0.708 0.632 0.653 0.673
wlm-base-plus-sv 0.649 0.641 0.656 0.697 0.713 0.716 0.687 0.698 0.714 0.667 0.664 0.680

• hubert-base-ls960: 960 hrs of LS [94.3M]
• hubert-xlarge-ll60k: 60k hrs of LL [962.5M]
• hubert-xlarge-ls960-ft: ASR fine-tuned of hubert-xlarge-

ll60k on 960 hrs of LS [962.5M]
• wavlm-large: mix 94k hrs data [315.4M]
• wavlm-base-plus, wavlm-base-plus-sv: mix 94k hrs data

[94.3M] (sv for speaker verification)
Fine-tuning is conducted using the Hugging Face toolkit.

For configurations employing a CTC head, we utilize the
Hugging Face class to attach the CTC head to the trans-
former encoder output, encoding each sequence into logits
representing probabilities of 32 alphabet tokens through linear
transformation. For configurations without a CTC head, the
SSL model’s encoding approach is used, producing 768- or
1024-dimensional embeddings for base and larger models,
respectively. Models are fine-tuned on 2,500 Speechocean762
training samples using MSE loss, with a batch size of 8, for
30 epochs, employing AdamW optimizer with a learning rate
of 1e-5. Results are averaged over two runs with different
random seeds. Hyperparameter optimization yields 1e-5 as the
optimal learning rate. Notably, simultaneous prediction of all
four pronunciation scores outperforms single-score prediction.

C. Evaluation Metric

The Pearson Correlation Coefficient (PCC) is used to
measure the correlation between model-predicted scores and
human-annotated scores. A PCC value close to 1 indicates a
strong positive relationship between the model’s predictions
and the human ratings.

IV. RESULTS

A. Performance Comparison of Fine-Tuned Models

Table I presents the APA performance (PCC) of 36 fine-
tuned models. Wav2Vec2.0 and HuBERT exhibit higher PCC
performance compared to WavLM. Specifically, within the
Wav2Vec2.0 models, w2v2-large-960h excels in accuracy and
total scores, while w2v2-large shows superior performance in
fluency and prosodic scores. Among the HuBERT models, hb-
xlarge-ls960-ft demonstrates the best PCC performance.

Models trained on Librispeech outperform those trained on
the larger but less refined Libri-light dataset. Notably, the

TABLE II
EXPLAINED VARIANCE RATIOS OF THE PCS

Pretrained Finetuned
PC1 PC2 PC1 PC2

w2v2-large 0.34 0.13 0.74 0.16
hb-large-ll60k 0.07 0.07 0.85 0.12

wlm-large 0.08 0.07 0.83 0.10

Librispeech-trained models w2v2-large and hb-base-ls960 out-
perform their Libri-light counterparts w2v2-large-lv60 and hb-
large-ll60k, even when the Librispeech models have smaller ar-
chitectures. Conversely, multilingual models trained on diverse
linguistic environments generally show lower performance.

Fine-tuning strategy efficacy varies across models. Freezing
the CNN FE yields optimal results for most models. Hu-
BERT, in particular, exhibits consistent performance improve-
ment with increasing model size. Conversely, the Librispeech-
trained w2v2-large and hb-base-ls960 perform comparably or
better when fully fine-tuned, outperforming their Libri-light-
trained counterparts, w2v2-large-lv60 and hb-large-ll60k.

CTC head integration generally enhances performance, but
with model-specific variations. Notably, the impact of CTC
head integration is significantly influenced by dataset differ-
ences. Wav2Vec2.0 and HuBERT exhibit contrasting patterns:
multilingual Wav2Vec2.0 models and the Libri-light-trained
w2v2-large-lv60 benefit from the CTC head. In Contrast, the
Libri-light-trained hb-large-ll60k performs poorly regardless of
the CTC head, while the Librispeech-trained hb-base-ls960
shows improved performance without it. This suggests that
HuBERT may not fully leverage the benefits of the CTC
head under certain conditions. Furthermore, the Librispeech-
trained w2v2-large and the ASR-fine-tuned w2v2-large-960h
demonstrate excellent performance irrespective of CTC head
integration. Conversely, the HuBERT x-large model, known for
its superior ASR performance, shows significant improvement
when incorporating the CTC head.

B. PCA-based Analysis of SSL Model Embeddings

Table II presents the explained variance ratios of the prin-
cipal components (PCs) from PCA applied to the final hidden
states of large-sized models encoded without a CTC head
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Fig. 2. 2D PCA visualization of (a) Wav2Vec2.0 (b) HuBERT (c) WavLM
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Fig. 3. 3D PCA visualization of (a) Wav2Vec2.0 (b) HuBERT (c) WavLM

and labeled with correct score labels. The explained variance
ratios of PC1 for the fine-tuned models correspond to 0.74,
0.85, and 0.83, respectively, whereas for the non-fine-tuned
models, they are 0.34, 0.07, and 0.08. This indicates that the
PC1 alone accounts for approximately 75% to 85% of the
primary variability in the original data, suggesting that fine-
tuning adjusts the model’s feature vectors to be more suitable
for pronunciation evaluation.

Figure 2 visualizes the 2D PCA results for fluency scores
of the models in Table II, with PC1 and PC2 as axes. Figure
3 adds PC3 for 3D PCA visualization. The manifold shapes
vary by model type: (a) Wav2Vec2.0 forms a cone shape, (b)
HuBERT forms a V shape, and (c) WavLM forms an S shape.
In 2D, HuBERT and WavLM do not show a continuous score
distribution, but in 3D, lower scores become more distinct with
the newly introduced z-axis.

The most notable model is Wav2Vec2.0, which demonstrates
the largest variance in the mid-score range and shows greater
variance in the lower score range compared to other models.
High scores are sharply modeled, while lower scores tend to be
more dispersed, indicating a continuous distribution of scores.

Figure 4 shows PCC results measured for various combi-
nations of principal component (PC) vectors for each model.
This analysis aims to verify whether the dimension-reduced
PC vectors can accurately predict the actual pronunciation
evaluation scores. Remarkably, all three models achieve similar
or better performance using only PC1 compared to the original
1024-dimensional vectors. Notably, the HuBERT and WavLM
models show improved performance with multiple PCs. Addi-
tionally, the PC combinations affecting pronunciation evalua-
tion vary across different aspects for each model.

Figure 5 visualizes the fluency scores for different HuBERT
models, categorized by score. The PCC performance for mod-
els (a), (b), and (c) are 0.692, 0.763, and 0.797, respectively.
Notably, higher-performing HuBERT models exhibit patterns
similar to the manifold observed in Wav2Vec2.0 models.

Fig. 4. PCCs for Different PC Combinations of (a) Wav2Vec2.0 (b) HuBERT
(c) WavLM
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Fig. 5. PCA visualization of (a) hb-large-ll60k w/o CTC (b) hb-large-ll60k
with frozen FE (c) hb-xlarge-ls960-ft w/ CTC

V. DISCUSSION

A. Extrinsic Analysis of Factors Contributing to Performance
Improvement

Table III compares the performance of our best model, based
on fluency and prosodic scores with the latest APA baseline
model. On the Speechocean762 dataset, our model achieves
PCC values up to 0.048 and 0.037 higher in fluency and
prosodic aspects, respectively. Although it does not surpass
the state-of-the-art performance reported in Ref. [4], it is
noteworthy that simply fine-tuning a pre-trained SSL model
can yield performance comparable to the latest pronunciation
assessment models.

a) Performance of ASR-adapted settings: ASR-adapted
settings perform excellently in APA tasks. Among the three
models, Wav2Vec2.0 and HuBERT demonstrate the best per-
formance when fine-tuned for ASR, while the noise-resistant
WavLM model showed relatively poorer performance. Ad-
ditionally, models trained on the cleaner Librispeech dataset
outperform those trained on noisier datasets.

b) Impact of Pre-Training Data: The type of data used
for pre-training significantly influences APA performance.
Models trained on the clean Librispeech dataset outperform
those trained on the noisier Libri-light dataset, despite the
quantitative disadvantage. Interestingly, the smaller hb-base-
ls960 model using Librispeech data outperforms the larger hb-

TABLE III
PERFORMANCE COMPARISON WITH BASELINE

Model Utterance Score (PCC) ↑
Accuracy Fluency Prosody Total

Kim et al. [5] - 0.780 0.770 -
GOPT [2] 0.714 0.753 0.760 0.742
HiPAMA [3] 0.730 0.749 0.751 0.754
3MH [4] 0.782 0.843 0.836 0.811
w2v2-large 0.691 0.794 0.786 0.728
hb-xlarge-ls960-ft 0.719 0.797 0.788 0.734
wlm-large 0.656 0.736 0.726 0.680



large-ll60k model, suggesting that dataset quality has a greater
impact on performance than model size.

Moreover, models trained on the clean, English ASR dataset
Librispeech outperform those trained on multilingual datasets,
particularly for APA tasks involving non-native speakers. This
is likely due to the acoustic similarity between the pre-training
and fine-tuning data, as demonstrated in Ref. [23], emphasizing
the importance of dataset relevance over volume and diversity.
Overall, we find that the optimal tuning methods vary depend-
ing on the characteristics of the pre-trained models. Therefore,
strategically tuning the models while considering their inherent
properties significantly impacts APA performance. Below are
the details of our discussion.

c) Role of low-level feature extraction: Maintaining the
low-level feature extraction ability of pre-trained models is
crucial for APA performance. Freezing CNN FE, which are
closely related to the unlabeled datasets used during pre-
training, often results in superior performance. However, fine-
tuning the entire model proves more beneficial for models
using Librispeech, aligning with findings in Ref. [13], which
suggest that fine-tuning all layers with a low learning rate
is effective when the source and target data are acoustically
similar.

d) CTC head influence: Learning information between
speech and text through a CTC head generally has a positive
impact on APA. However, Wav2Vec2.0 and HuBERT mod-
els exhibit contrasting improvements depending on the ASR
environment. For Wav2Vec2.0, the CTC head is particularly
beneficial in less favorable ASR conditions, such as when
using the Libri-light or multilingual datasets, which have
shown lower performance in English pronunciation assess-
ment. However, it has little impact in more favorable settings
like using the Librispeech dataset or ASR fine-tuned models.
Conversely, HuBERT struggles even with the CTC head in
challenging conditions. Notably, in the hb-xlarge-ll60k model,
which demonstrates strong ASR performance [24], incorpo-
rating the CTC head significantly enhances performance. This
suggests that while HuBERT can learn effectively with the
CTC head in favorable conditions, it performs poorly without
it, even in these optimal settings. In contrast, Wav2Vec2.0
models perform well without the CTC head in favorable
ASR environments, likely due to their effective learning of
phoneme-level information during pre-training, as supported
by several studies [7], [25]. These findings highlight the
different mechanisms by which the two models learn phonetic
information, emphasizing that optimal tuning strategies should
consider the specific characteristics of each pre-trained model
to maximize pronunciation assessment performance.

B. Intrinsic Analysis of Feature Representation

The high variance explained by PC1 in Table II, along with
the superior APA performance observed when using PC1 alone
in Fig. 4, indicates that SSL models fine-tuned for APA tasks
effectively capture key high-dimensional features critical for
score prediction. Each SSL model evaluates scores based on
these principal features.

As illustrated in Fig. 2 and Fig. 3, the varying manifold
shapes in the feature space composed of PCs indicate different
pronunciation assessment patterns across models. Specifically:
(a) The conical shape of the Wav2Vec2.0 manifold suggests
a primary reliance on PC1 for evaluation. (b) The V-shaped
manifold of the HuBERT model implies the use of two main
criteria. (c) The S-shaped manifold of the WavLM model
indicates an assessment based on multiple criteria. Notably, un-
like Wav2Vec2.0, HuBERT and WavLM demonstrate a clearer
score distribution in three-dimensional space, as evidenced
by the performance improvement with additional PCs in Fig.
4. This suggests that while Wav2Vec2.0 primarily relies on
a single PC for evaluation, HuBERT and WavLM utilize a
broader range of evaluation criteria.

As shown in Fig. 2(a), the Wav2Vec2.0 model uniquely
captures a continuous score distribution and exhibits significant
variance in the middle score range, unlike the other models.
In the Speechocean762 dataset, the middle score range is
predominant, and the model’s ability to recognize various error
patterns within this range underscores its superior performance.
Moreover, the data distribution in Wav2Vec2.0, with most data
concentrated in the middle and high scores and scarcely any
data in the low scores, aligns with the actual distribution of the
Speechocean762 dataset. For real-world APA applications, it
is crucial that models are well-calibrated to realistic scenarios,
which Wav2Vec2.0 accomplishes most effectively. Addition-
ally, Fig. 5 demonstrates that the higher-performing HuBERT
model exhibits a manifold similar to that of the Wav2Vec2.0,
further emphasizing its excellence. In summary, Wav2Vec2.0
learns the most advantageous information for APA and can be
considered the best model for this task.

Different fine-tuning strategies and datasets impact model
performance but do not alter the intrinsic features the models
learn. Figures 2 and 3 show noticeable differences between
models but minimal changes due to dataset or fine-tuning vari-
ations. This suggests these factors affect performance without
fundamentally changing the intrinsic features.

VI. CONCLUSION

This study explores the characteristics of SSL models that
enhance APA performance through various experiments and
explains their performance results. Additionally, we propose
an intrinsic analysis methodology that visually confirms the
distribution and variability of data via manifold shapes, re-
flecting the criteria and complexity used in pronunciation
assessment. This approach helps in understanding the intrinsic
operational mechanisms of each model. Future research should
aim to analyze PC vectors in detail to clarify the features they
represent, as the exact scoring criteria of SSL models were not
clearly identified. The diverse analytical results of this study
offer crucial guidelines for utilizing SSL models in APA and
enhance understanding of the previously opaque SSL models,
thereby contributing to the development of explainable SSL
model-based pronunciation assessment models in the future.
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