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Abstract—Independent low-rank matrix analysis (ILRMA) is
the state-of-the-art technique for blind source separation under
the overdetermined condition. Recently, some methods that focus
on the spectrogram consistency of the separated signals to
improve the separation performance have been proposed. One
of such methods introduces into ILRMA the regularization term
that directly induces the separated signals to be consistent.
Although in the conventional method, the regularization term
is designed to be independent of the observed signals, we design
the regularization term to be dependent on the observed signals.
For the obtained cost function, we derive a new update rule
on the basis of the majorization-minimization algorithm with
the auxiliary function that is an extension of that derived in
the conventional method. Finally, a numerical experiment is
conducted to verify the separation performance.

I. INTRODUCTION

Blind source separation (BSS) is a technique for estimating
individual sources from an observed mixture without knowl-
edge of the characteristics of sources or mixing conditions.
Independent component analysis (ICA) [1] is a representative
approach to solving BSS under the overdetermined condition
(the number of microphones M is greater than or equal to
that of sources N ). In ICA, the demixing matrix is estimated
under the assumption that individual sources are statistically
independent and the mixing system is instantaneous. Since the
sources are mixed by time-domain convolution for acoustic
signals, ICA is often applied in the time-frequency domain
via short-time Fourier transform (STFT) under the assumption
that the mixing system can be approximated by instantaneous
mixing in the time-frequency domain. This method is called
frequency-domain ICA (FDICA) [2] and estimates frequency-
wise demixing matrices by independently applying ICA to
complex-valued signals in each frequency bin. ICA has arbi-
trariness to the permutation of the estimated signals; therefore,
the permutations should be aligned for frequency bins in
FDICA (permutation problem). Several permutation solvers
have been studied to solve this problem [3]–[5]. In contrast,

This work was supported by JST Moonshot R&D Grant Number JP-
MJMS2011 (for algorithm development) and Tateisi Science and Technology
Foundation (for practical experiment).

independent vector analysis (IVA) [6] and independent low-
rank matrix analysis (ILRMA) [7] can estimate the frequency-
wise permutations simultaneously with the demixing matrix.
These techniques assume a more complex source model
than FDICA and can therefore capture dependences between
frequency bins and align the frequency-wise permutations.
Among these methods, it has been reported that ILRMA tends
to show a higher separation performance than FDICA and
IVA [7]. However, it has been reported that there is room for
performance improvement even in ILRMA [8].

The spectrogram consistency (or simply consistency) [9]–
[11] has been studied as a new promising clue to align the
frequency-wise permutations [12]–[14]. In some BSS methods
in the time-frequency domain, such as FDICA, IVA, and
ILRMA, assumptions on the spectrograms of the separated
signals are made. However, these assumptions are not guar-
anteed to be satisfied for the final output in the time domain
obtained as the inverse STFT (ISTFT) of the spectrograms
of the separated signals, i.e., the spectrograms obtained as
the STFT of the final output are often different from the
spectrograms of the separated signals before ISTFT. This is
because the operation of STFT after ISTFT is a projection
operator on the image space of the STFT as a linear operator.
The image space of the STFT is called the consistent subspace
in this paper. For example, if the frequency-wise permutations
are not aligned, the spectrogram is changed greatly by the
projection and becomes blurred in both time and frequency
directions as shown in Fig. 1. Then, the performance of
BSS is expected to be improved by making assumptions
on the projected spectrograms or by reducing the difference
between the spectrograms before and after the projection. It
has been reported that the performance of FDICA without
a permutation solver can be improved by incorporating the
projection operator into the cost function of FDICA [12].

As for ILRMA with the spectrogram consistency consid-
ered, consistent ILRMA (Consist. ILRMA) [13] and ILRMA
with spectrogram-consistency regularization [14] have been
proposed. In Consist. ILRMA [13], the update rules of IL-
RMA are modified to approximate the projected spectrograms
instead of the spectrograms of the separated signals (before the



Fig. 1: Examples of the spread by projecting inconsistent spec-
trograms onto the consistent subspace. Original speech signals
(left) were permutated randomly (middle) with frequency bins
and projected onto the consistent subspace (right).

projection) by nonnegative matrix factorization (NMF) [15].
In [14], a regularization term that induces the spectrograms
of the separated signals (before the projection) themselves to
be close to the consistent subspace is designed for ILRMA.
ILRMA with the spectrogram-consistency regularization has
the advantage of being formulated as an optimization problem,
whereas Consist. ILRMA is heuristic and unfortunately not
formulated as an optimization problem. The regularization
term proposed in [14] is designed to be independent of the
observed signals; in other words, it is determined solely by the
STFT conditions (e.g., the window length, window function,
and hopsize). Therefore, neither the specific structure nor
correlation of the observed signals can be fully utilized in [14].
In this paper, we design a new regularization term for ILRMA
on the basis of the distances between the spectrograms of
the separated signals and the projected spectrograms of the
separated signals onto the consistent subspace. The proposed
regularization term depends on the observed signals; thus, the
separation performance is expected to be improved more than
in [14]. For the new cost function, we unfortunately cannot use
the same technique of [14] to design the auxiliary function
for the majorization-minimization (MM) algorithm [16]. To
address this problem, we extend the auxiliary-function-design
methodology from [14] by utilizing the mathematical finding
in this paper and design an auxiliary function on the basis of
this finding. We derive a new update rule by applying vector-
wise coordinate descent (VCD) [17] to the designed auxiliary
function. Finally, we verify the separation performance of the
proposed method by a simulation experiment.

II. PRELIMINARIES

In this paper, we consider a time-domain signal to be a real-
valued signal of length L. The complex-valued spectrogram of
a time-domain signal ψ̃ ∈ RL is represented by the supervecter
Ψ⃗ ∈ CIJ , where I and J are the window length and the
number of time frames in STFT, respectively. Here, (I(j −
1)+i)th element of Ψ⃗ is the ith frequency bin of the spectrum
in the jth frame, where i = 1, . . . , I and j = 1, . . . , J are the
indices of the frequency bins and time frames, respectively.

Hereafter, we assume the practical case where IJ > L holds.
Let τ be the hopsize of STFT, h ∈ RI be the window function.
The length of the signal after zero-padding is denoted by L′ =
L(pre) +L+L(post), where L(pre)(< I) and L(post)(< I) are
the length of zero-padding at the beginning and end of the
time signal, respectively. Note that L′ = τ(J − 1) + I holds.
The L′ × L matrix representing zero-padding is given by

Z =
[
OL×L(pre) EL OL×L(post)

]T ∈ RL′×L, (1)

where Oq×q′ is the q × q′ zero matrix and Eq is the q ×
q identity matrix for any nonnegative integer q, q′. Here, ·T
represents the transpose. That is, the signal after zero padding
can be represented by Zψ̃. The (I(j − 1) + 1)th to (Ij)th
elements of ψ⃗, which is the spectrum in the jth frame, are
obtained by multiplying the (τ(j−1)+1)th to (τ(j−1)+I)th
samples of the zero-padded signal Zψ̃ by the window function
h and applying discrete Fourier transform (DFT). Thus, the
vector created by arranging the (I(j − 1) + 1)th to (Ij)th
element of X⃗ is represented by F∆jZψ̃, where F ∈ CI×I

denotes the representation matrix of DFT and ∆j ∈ RI×L′
is

defined as

∆j =
[
OI×τ(j−1) diag{h} OI×(L′−τ(j−1)−I)

]
. (2)

Here, diag{h} represents the diagonal matrix whose diagonal
elements are h. Therefore, Ψ⃗ is represented by Ψ⃗ = Fψ̃,
where F ∈ CIJ×L is defined as

F =

F∆1Z
...

F∆JZ

 . (3)

In this paper, we consider that the STFT conditions satisfy
the condition that F has full column rank so that ISTFT exists.
We use the Moore–Penrose inverse ·† of F as ISTFT, i.e., F†

is a representation matrix of ISTFT. Note that F†F is equal
to EL and FF† is an orthogonal projection matrix onto the
image space of F . A spctrogram Ψ⃗′ ∈ CIJ is called consistent
when Ψ⃗′ is in the image space of F , i.e., Ψ⃗′ = FF†Ψ⃗′ holds.

III. CONVENTIONAL METHODS

A. ILRMA[7]

Let sij,n, xij,m, and yij,n be the (i, j)th bin in the
spectrogram of the nth source, the mth observed, and nth
separated signals, respectively, where n = 1, . . . , N and
m = 1, . . . ,M denote the indices of the source and observed
signals, respectively. We define sij = (sij,1 · · · sij,N )T ∈ CN ,
xij = (xij,1 · · ·xij,M )T ∈ CM , and yij = (yij,1 · · · yij,N )T ∈
CN .When the mixing system is time-invariant and the rever-
beration time is sufficiently shorter than the length of the STFT
window, we can assume instantaneous mixing in the time-
frequency domain as xij = Aisij , where Ai ∈ CM×N is
the mixing matrix. In this paper, we assume that M = N
and Ai is regular. Under these assumptions, there exists the
demixing matrix Wi = (wi,1 · · ·wi,N )H ≃ A−1

i that satisfies
yij =Wixij . Let wi,nm be the mth elements of wi,n.



In ILRMA, yij,n is assumed to be generated from a complex
Gaussian distribution with a mean of zero and the variance
ρij,n as follows:

p(yij,n) =
1

πρij,n
exp

(
−|yij,n|

2

ρij,n

)
. (4)

The variance ρij,n is assumed to have a low-rank structure and
modeled by NMF [15] as

ρij,n =

K∑
k=1

tik,nvkj,n, (5)

where tik,n ≥ 0 and vkj,n ≥ 0 represent the basis and the
activation, respectively, and k = 1, . . . ,K denotes the index
of the basis. The demixing matrix {Wi} and the NMF vari-
ables {tik,n}, {vkj,n} are obtained from maximum likelihood
estimation by minimizing the following negative log-likelihood
as a cost function:

L =
1

2

∑
i,j,n

(
|wH

i,nxij |2∑
k tik,nvkj,n

+log
∑
k

tik,nvkj,n

)

− J

2

∑
i

log |detWi|2 + const., (6)

where const. denotes the terms independent of {Wi}, {tik,n}
and {vkj,n}. To optimize (6), the demixing matrix {Wi} and
the NMF variables {tik,n}, {vkj,n} are updated alternately.
The demixing matrix {Wi} is updated with iterative projection
(IP) [18]. The NMF variables {tik,n}, {vkj,n} are updated on
the basis of the MM algorithm[16]. All of these update rules
ensure the monotonic nonincrease in the cost function (6).

B. ILRMA with spectrogram-consistency regularization inde-
pendent of observation [14]

In [14], the regularization term based on spectrogram consis-
tency is introduced to ILRMA. Let Y⃗n be the supervectorized
spectrogram of the nth separated signal whose (I(j−1)+ i)th
element is yij,n, and the degree to which Y⃗n deviates from the
consistent subspace is formulated as [14]

E(Y⃗n) = ∥Y⃗n −FF†Y⃗n∥22

=

∥∥∥∥∥(EIJ −FF†)
∑
m

WnmF x̃m

∥∥∥∥∥
2

2

, (7)

where Wnm ∈ CIJ×IJ is a diagonal matrix whose (I(j −
1) + i)th diagonal element is w∗

i,nm and x̃m ∈ RL is the
mth observed signal in the time domain. Here, ·∗ denotes
the complex conjugate. To induce consistency for arbitrary
observed signals, the case where x̃m is a white Gaussian signal
without correlation between channels is considered, and the
expected value

∑
n E[E(Y⃗n)] is used as a regularization term

in [14]. In this paper, the regularization used in [14] is called
observation-independent consistency regularization (OICR).

The regularization term can be represented as the quadratic
form of wi,n as follows:∑

n

E
[
E(Y⃗n)

]
=
∑
n,i,i′

wH
i,nG

(ind)
ii′ wi′,n, (8)

where G(ind)
ii′ ∈ CM×M is only determined by the STFT con-

ditions. Since x̃m is assumed to be independent and identically
distributed with respect to m, G(ind)

ii′ = g
(ind)
ii′ EM (g

(ind)
ii′ ∈ C)

holds. The cost function of ILRMA with OICR is formulated
as follows:

LOICR = L+ β
∑
n,i,i′

g
(ind)
ii′ wH

i,nwi′n, (9)

where β > 0 is the weight of the regularization term in
ILRMA with OICR. Since the added regularization term (8)
is independent of the NMF variables, the update rules for
the NMF variables {tik,n} and {vkj,n} are the same as in
ILRMA. For {Wi}, an auxiliary function is designed for the
MM algorithm [16] and updated using VCD [17] instead of IP
(see details in [14]). The update rule of {Wi} also guarantees
the monotonic nonincrease in the cost function (9).

IV. PROPOSED METHOD

A. Motivation and approach

Since the regularization term in [14] is formulated to be
independent of the to-be-separated observed signals, the regu-
larization cannot be appropriate for specific observed signals.
Therefore, if we can introduce a regularization term that
depends on the specific structure of the to-be-separated ob-
served signals, further improvement in separation performance
is expected. In this paper, we propose the use of

∑
n E(Y⃗n)

itself calculated with the to-be-separated observed signals as a
regularization term for ILRMA. The regularization term in the
conventional method has a simple structure because there is no
correlation between the observed channels. Unfortunately, the
proposed regularization term does not always have a simple
structure because there exists a correlation between the ob-
served channels. Thus, we cannot exactly follow the technique
for designing the auxiliary function as in [14] for the newly
obtained optimization problem. We find out the relationship
between two matrices based on the positive semidefiniteness
that allows us to extend the technique in [14], and we design an
auxiliary function for the proposed cost function. On the basis
of the MM algorithm, we derive an update rule by applying
VCD [17] to the proposed auxiliary function.

B. Design of regularization term and update rules

By expanding (7), the proposed regularization term is also
deformed into the following quadratic form of wi,n:∑

n

E(Y⃗n) =
∑
n,i,i′

wH
i,nGii′wi′,n, (10)

where Gii′ ∈ CM×M is dependent on not only the STFT
conditions but also the to-be-separated observed signals. The
specific representation of Gii′ will be omitted for space
limitation. The cost function of the proposed method is the
weighted sum of the cost function of ILRMA (6) and the
regularization term (10) as follows:

LProp =L+ γ̃
∑
n,i,i′

wH
i,nGii′wi′,n, (11)



where γ̃ ≥ 0 is the weight of the regularization term in the
proposed method. Then, we derive update rules for the cost
function (11). Since the regularization term (10) is independent
of the NMF variables {tik,n} and {vkj,n} as in [14], the
update rules for the NMF variables are the same as in ILRMA.
Therefore, it is sufficient to derive an update rule for {wi,n}.

The cost function (11) has a correlation term between
frequencies and this makes it difficult to optimize {wi,n}
simultaneously. Therefore, we focus on one frequency bin i
and treat the variables related to the other frequency bins as
constants. That is, {wi,n} is updated one by one for each
frequency bin in a block coordinate descent manner. The cost
function is rewritten with regard to the frequency i as follows:

LProp =J

∑
n

wH
i,n

1

J

∑
j

xijx
H
ij∑

k tik,nvkj,n
wi,n−log |detWi|2


+γ̃
∑
n

[
wi,n

w∗
i,n

]H [
Gii Gîi

Gîi Gî̂i

] [
wi,n

w∗
i,n

]

+2γ̃
∑
n

Re

([∑
i′ ̸=i,̂iG

H
i′iwi′,n∑

i′ ̸=i,̂iG
H
i′ î
wi′,n

]H[
wi,n

w∗
i,n

])
+const.,

(12)

where Re (·) denotes a real part of a complex number and
const. denotes the terms independent of wi,n. The index î is
the frequency index opposite of i across the Nyquist frequency,
where i + î = I + 2 (i ̸= 1). It is difficult to optimize (12)
analytically because the terms wT

i,nGîiwi,n and wH
i,nGîiw

∗
i,n

are included in the cost function. Note that this problem does
not occur in the case i = 1 (corresponding to 0 Hz) or
i = I/2, because wi,n (i = 1, I/2) is real-valued to satisfy
the constraint that the separated signal is real-valued in the
time domain. The demixing matrix related to i = 1, I/2
can be updated using VCD without auxiliary functions. We
design the auxiliary function without the terms wT

i,nGîiwi,n

and wH
i,nGîiw

∗
i,n in the case i ̸= 1, I/2.

In this paper, we follow the strategy used in [14] to derive
the auxiliary function on the basis of Claim IV.1 (Claim 1
in [14]) for (12).

Claim IV.1 (Claim 1 in [14]). For any integer q ≥ 1, w ∈ Cq ,
α ∈ Cq , and positive semidefinite matrix Ĝ ∈ Cq×q , we have

wHĜw ≤wHĜ+w

−2Re
(
αH(Ĝ+ − Ĝ)w

)
+αH(Ĝ+ − Ĝ))α,

(13)

where Ĝ+ is a positive semidefinite matrix satisfying Ĝ+ −
Ĝ ⪰ O. Equality holds when α = w.

Let Ĝ+, Ĝ, w, and α in Claim IV.1 be set as

Ĝ+ =

[
G+

ii O
O G+

î̂i
,

]
, Ĝ =

[
Gii Gîi

Gîi Gî̂i

]
,

w = [wT
i,n,w

∗T
i,n]

T, and α = [αT
i,n,α

∗T
i,n]

T, where G+
ii and

G+

î̂i
are chosen so that Ĝ+ − Ĝ ⪰ O is satisfied. By

using (13), we can derive an auxiliary function without the
terms wT

i,nGîiwi,n and wH
i,nGîiw

∗
i,n for the second term of

(12).
In [14], since G(ind)

ii′ becomes the diagonal matrix due to
no correlation with respect to m, the problem of finding the
matrix Ĝ+ is simplified to that of finding 2× 2 matrices, and
the following relation is used in [14]:[

g
(ind)
ii +|g(ind)

îi
| 0

0 g
(ind)

î̂i
+|g(ind)

îi
|

]
−

[
g
(ind)
ii g

(ind)

îi

g
(ind)

îi
g
(ind)

î̂i

]
⪰ O.

(14)

Since Gii′ has nondiagonal terms due to the correlation
regarding m, we cannot, however, simply follow this derivation
in [14]. For this problem, we find the following relation as[

Gii + (GîiGîi)
1
2 OM×M

OM×M Gî̂i + (GîiGîi)
1
2

]
−
[
Gii Gîi

Gîi Gî̂i

]
⪰ O,

(15)

which is an extension of (14). This fact can be proved by
singular value decomposition, but we omit the details for space
limitation.

By using Claim IV.1 and (15), we design the total auxiliary
function for (12) as

L+
Prop =J

[
wH

i,nD
+
i,nwi,n + 2Re (b+H

i,nwi,n)− log |detWi|2
]

+ const., (16)

where const. denotes the terms independent of wi,n and D+
i,n

and b+i,n are respectively defined as

D+
i,n=

1

J

∑
j

xijx
H
ij∑

k tik,nvkj,n
+
2γ̃

J

(
Gii+(GîiGîi)

1
2

)
, (17)

b+i,n=
2γ̃

J

∑
i′ ̸=i,i

GH
i′iwi′,n−(GîiGîi)

1
2αi,n+G

H
îi
α∗

i,n

 .

(18)

Here, αi,n ∈ CM is an auxiliary variable and the equality
for the auxiliary function holds when αi,n = wi,n. Since
(16) is the sum of a quadratic form, a linear term, and a
log-determinant term, an update rule using VCD [17] can be
obtained as follows:

ζi,n←(WiD
+
i,n)

−1en, (19)

ζ̂i,n←(D+
i,n)

−1b+i,n, (20)

χi,n←ζHi,nD+
i,nζi,n, (21)

χ̂i,n←ζHi,nD+
i,nζ̂i,n, (22)

wi,n←


ζi,n√
χi,n
− ζ̂i,n (χ̂i,n = 0),

χ̂i,n

2χi,n

(
1−
√
1+

4χi,n

|χ̂i,n|2

)
ζi,n−ζ̂i,n (otherwise),

(23)

where en ∈ CN is a vector whose nth component is one and
the others are zero. This update rule guarantees the monotonic
nonincrease in the cost function (11). All the update rules in



TABLE I: Averages of SDR improvements over 100 trials for each method

ILRMA
Consist.
ILRMA ! = 10!" ! = 10!# ! = 10!$ % = 10% % = 10$ % = 10# %& = 10% %& = 10$ %& = 10#

9.6 11.0 9.6 9.5 8.7 10.5 10.8 5.3 10.4 11.2 8.7

ILRMA w/ OSICR Prop. w/o temp. Prop. w/ temp.

5.66	cm

40° 40°
200	cm

Fig. 2: Recording conditions of impulse response.

the proposed method including those for the NMF variables
{tik,n} and {vkj,n} guarantee the monotonic nonincrease in
the cost function (11).

C. Weight of regularization

In this paper, to prevent the effect of the regularization
term from varying with the power and length of the observed
signals, we normalize the regularization weight γ̃ as

γ̃ = γ · J∑
i,j ∥xij∥22

(24)

and design γ ≥ 0 instead.
In some regularization-based methods, the scheduling of the

weight parameter is often performed. We use “tempering,”
in which the weight parameter is reduced with increasing
iteration number, because the regularization to be consistent
may conflict with the separation. In the tempering of γ, we
set the the parameter γ at the cth iteration as max{0, γ0 −
γ0(c − 1)/(C0 − 1)}. Note that the parameter γ is γ0 at the
first iteration, decreases linearly thereafter, and is 0 after the
C0th iteration.

V. SIMULATION EXPERIMENT

A. Experimental conditions

To confirm the performance of the proposed method, a
simulation experiment was conducted using two sources and
two microphones (M = N = 2). Ten pairs of music signals
from SiSEC2011[19] were prepared as dry sources. They were
convolved with the impulse responses E2A (T60 = 300 ms) in
the RWCP database [20]. The sources and microphones were
placed as shown in Fig. 2. Both the dry sources and the impulse
responses were resampled at 16 kHz. The STFT was computed
with a window length of 256 ms, a hopsize of 64 ms, and the
Hamming window.

We compared ILRMA [7], Consist. ILRMA [13], ILRMA
with OICR (ILRMA w/ OICR) [14], the proposed method with
constant γ (prop. w/o temp.), and the proposed method with
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Fig. 3: Pairplots for SDR improvements of ILRMA and (a)
Consist. ILRMA or (b) prop. w/ temp. (γ0 = 104).

the tempering of γ (prop. w/ temp.). The number of bases
for NMF K was 10. The demixing matrix was initialized to
the identity matrix and the NMF variables were initialized
with uniformly distributed random values over (0, 1). Ten
trials were performed using different random seeds, i.e., we
conducted experiments under 100 conditions (10 pairs of
sources × 10 random seeds). The number of iterations was
400. We used β = 10−6, 10−5, 10−4 in ILRMA w/ OICR,
γ = 103, 104, 105 in prop. w/o temp., and γ0 = 103, 104, 105

and C0 = 50 in prop. w/ temp. The source-to-distortion
ratio (SDR) [21] improvement was used as a measure of the
separation performance.

B. Results and discussion

Table I shows the average of SDR improvements. Prop. w/o
temp. and prop. w/ temp. improved the separation performance
compared with ILRMA except for γ = 105 in prop. w/o temp.
and γ0 = 105 in prop. w/ temp., in which the initial value
of γ was very large. In particular, prop. w/ temp. (γ0 = 104)
showed an average SDR improvement of 0.2 dB higher than
Consist. ILRMA. In this experiment, ILRMA w/ OICR showed
a lower separation performance than ILRMA, but this may be
due to differences between the evaluation data used in [14]
and in this study. Fig. 3 shows the pairplots for the SDR
improvements of ILRMA with Consist. ILRMA and prop. w/
temp. (γ0 = 104). Prop. w/ temp. (γ0 = 104) showed higher
SDR improvements than Consist. ILRMA in many cases when
the SDR improvements of ILRMA were lower than 5 dB.
The proposed regularization term seems to prevent the ILRMA
from converging to poor solutions.

VI. CONCLUSION

Several methods have been proposed with the spectro-
gram consistency considered in ILRMA. One of them is a



regularization-based method that induces the separated signals
to be consistent. Although the regularization term independent
of the observed signals is used in the conventional method, we
designed the regularization term that depends on the observed
signals. For the optimization of the new cost function with the
new regularization term, we designed the auxiliary function
that is an extension of that in the conventional method. By
applying VCD to the auxiliary function, we derived the update
rule that guarantees the monotonic nonincrease in the cost
function. A numerical experiment confirmed that the proposed
method with the tempering of the weight parameter of the reg-
ularization showed a higher performance than the conventional
methods.

ACKNOWLEDGMENT

The authors would like to thank Rintaro Ikeshita and Tomo-
hiro Nakatani (NTT) for useful discussions.

REFERENCES

[1] P. Comon, “Independent component analysis, a new
concept?” Signal Processing, vol. 36, no. 3, pp. 287–
314, 1994.

[2] P. Smaragdis, “Blind separation of convolved mixtures
in the frequency domain,” Neurocomputing, vol. 22,
no. 1, pp. 21–34, 1998.

[3] S. Kurita, H. Saruwatari, S. Kajita, K. Takeda, and F.
Itakura, “Evaluation of blind signal separation method
using directivity pattern under reverberant conditions,”
in Proc. ICASSP, vol. 5, 2000, pp. 3140–3143.

[4] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A
robust and precise method for solving the permutation
problem of frequency-domain blind source separation,”
IEEE Trans. SAP, vol. 12, no. 5, pp. 530–538, 2004.

[5] H. Sawada, S. Araki, and S. Makino, “Measuring de-
pendence of bin-wise separated signals for permutation
alignment in frequency-domain bss,” in Proc. ISCAS,
2007, pp. 3247–3250.

[6] T. Kim, T. Eltoft, and T.-W. Lee, “Independent vector
analysis: An extension of ICA to multivariate compo-
nents,” in Proc. ICA, 2006, pp. 165–172.

[7] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and
H. Saruwatari, “Determined blind source separation
unifying independent vector analysis and nonnegative
matrix factorization,” IEEE/ACM Trans. ASLP, vol. 24,
no. 9, pp. 1626–1641, 2016.

[8] D. Kitamura, N. Ono, and H. Saruwatari, “Experimental
analysis of optimal window length for independent
low-rank matrix analysis,” in Proc. EUSIPCO, 2017,
pp. 1170–1174.

[9] D. Griffin and J. Lim, “Signal estimation from modi-
fied short-time fourier transform,” IEEE Trans. ASSP.,
vol. 32, no. 2, pp. 236–243, 1984.

[10] J. Le Roux and E. Vincent, “Consistent Wiener filtering
for audio source separation,” IEEE SP Letters, vol. 20,
no. 3, pp. 217–220, 2012.

[11] N. Perraudin, P. Balazs, and P. L. Søndergaard, “A fast
Griffin–Lim algorithm,” in Proc. WASPAA, 2013, pp. 1–
4.

[12] K. Yatabe, “Consistent ICA: Determined BSS meets
spectrogram consistency,” IEEE SP Letters, vol. 27,
pp. 870–874, 2020.

[13] D. Kitamura and K. Yatabe, “Consistent independent
low-rank matrix analysis for determined blind source
separation,” EURASIP JASP, vol. 2020, no. 46, pp. 1–
35, 2020.

[14] S. Misawa, N. Takamune, K. Yatabe, D. Kitamura,
and H. Saruwatari, “Blind source separation using in-
dependent low-rank matrix analysis with spectrogram-
consistency regularization,” in Proc. APSIPA, 2023,
pp. 1035–1042.

[15] D. D. Lee and H. S. Seung, “Learning the parts of
objects by non-negative matrix factorization,” Nature,
vol. 401, no. 6755, pp. 788–791, 1999.

[16] D. R. Hunter and K. Lange, “Quantile regression via an
MM algorithm,” JCGS, vol. 9, no. 1, pp. 60–77, 2000.

[17] “Independent deeply learned matrix analysis with auto-
matic selection of stable microphone-wise update and
fast sourcewise update of demixing matrix,” Signal
Processing, vol. 178, pp. 1–12, 2021.

[18] N. Ono, “Stable and fast update rules for independent
vector analysis based on auxiliary function technique,”
in Proc. WASPAA, 2011, pp. 189–192.

[19] S. Araki, F. Nesta, E. Vincent, et al., “The 2011 signal
separation evaluation campaign (SiSEC2011): - Audio
source separation -,” in Proc. LVA/ICA, 2012, pp. 414–
422.

[20] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and
T. Yamada, “Acoustical sound database in real envi-
ronments for sound scene understanding and hands-free
speech recognition,” in Proc. LREC, 2000, pp. 965–968.

[21] E. Vincent, R. Gribonval, and C. Févotte, “Performance
measurement in blind audio source separation,” IEEE
Trans. ASLP, vol. 14, no. 4, pp. 1462–1469, 2006.


