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Abstract—Spoken Language Identification (SLID) is a key
component in audio processing that facilitates the recognition
and understanding of audio clips of spoken languages. Various
applications, such as automatic speech recognition, multilin-
gual voice assistants, and real-time translation services need
SLID capabilities. Effective SLID enhances the transcription
and processing of spoken language data and improves user
experiences by providing personalized and relevant responses in
the correct language. This study propose Teager Energy Cepstral
Coefficients (TECC) features to capture the characteristics of
spoken language. To evaluate how well TECC performs for
SLID, we conducted a comparative analysis of its performance
across various spectral features, namely, Mel Frequency Cepstral
Coefficients (MFCC), and Linear Frequency Cepstral Coefficients
(LFCC). Two classifiers, deep residual networks (ResNet-50) and
Time Delay Neural Networks (TDNN), were employed in this
comparison. To maximize the performance of SLID system, we
applied feature-level fusion and score-level Fusion techniques to
advance the state-of-the-art. Additionally, latency analysis as-
sesses time optimization to ensure the system operates efficiently.
We obtained 98.25 % accuracy in this study for two languages,
and 84.25 % on 10 different languages using TECC features.

Index Terms—Spoken Language Identification, Teager Energy
Cepstral Coefficients, ResNet-50, Feature-Level Fusion, Score-
Level Fusion.

I. INTRODUCTION

The task of automatically identifying language being used
by a user from a sample of speech, regardless of the speaker’s
accent, gender, or identity is called as Spoken Language
Identification (SLID) task. Solving the issue of SLID, has
enormous potential in real-life cases, such as multilingual
spoken translation, human-machine communication systems,
spoken language retrieval, multilingual speech transcription
system, and many other language-based tasks. Beside solving
all these issues, also helps users in many international affairs,
such as smooth communications between people of other
countries. The proposed system has the potential to work
seamlessly with automatic speech recognition, multilingual
voice assistants, and real-time translation services, enhancing
communication across different languages. The capability of
proposed method enhances the transcription and processing
of spoken language data, ensuring accurate interpretation. In
our study, we employed a system that can identify 10 inter-
national languages from raw speech waveforms. We employ
signal processing-based front-end feature extraction, and deep
learning classifiers as back-end for SLID task. Numerous

contemporary studies employ characteristics that provide in-
sights into the structure of the vocal tract system, utilizing the
acoustics of speech, which can be derived from Mel Frequency
Cepstral Coefficients (MFCC) features [1], [2]. Such acoustic
attributes encompass distinct phonemes for each language,
thereby assisting in differentiating between multiple languages.
Nevertheless, MFCC features are notoriously susceptible to
noisy surroundings and variations in speaking styles.
In this paper, we propose use of Teager Energy Operator
(TEO)-based features, namely, Teager Energy Cepstral Co-
efficients (TECC) features for SLID task. While the MFCC
features align with human auditory perception and the LFCC
features provide an equal frequency representation, TECC
captures the vocal tract energy and the non-linear charac-
teristics of speech signals. Deep learning classifiers, such
as ResNet-50, and TDNN have been used in this study,
in order to leverage the proposed methodology with recent
technological advancement. Experimental results demonstrate
that the combination of TECC features with the ResNet-50
classifier achieves better accuracy for LID as compared to the
TDNN classifier (to be discussed in Section IV-A). Similar
observations can be observed on MFCC, and LFCC features,
with both the classifiers. Traditional classification methods
have been used previously for many studies, such as in [3],
[4], authors employ acoustic features with statistical methods,
such as the Support Vector Machine (SVM), Hidden Markov
Model (HMM), Universal Background Model (UBM), and
Gaussian Mixture Model (GMM) for classification of acoustic
features. Motivated by employment of residual-based features
with TDNN classifier for SLID task [5], we employ TECC-
based features with TDNN and ResNet-50 classifier.

In order to obtain optimal results by exploring variety of
features, we also reported the results using two types of
data fusion strategies (namely, feature-level, and score-level),
which resulted in a further increase in accuracy. Although
the proposed TECC feature vector does not perform at its
optimal capacity, we successfully provide logical reasoning
and analysis for the results obtained.

A. Related Works

Many existing studies in recent days have boost the research
potential on SLID tasks. Some factor, that remains common
in most of the studies on SLID tasks, till date are dataset



(VoxLingua107), and use of recent deep learning models. In
[5], authors employ linear prediction residual-based features
for SLID task for classification of Indian languages. For
countries with multilingual and large population, such as India,
SLID has key importance. For diversified countries, such as
India, where there are more than 720 languages, and Papua
New Guinea (840 languages), SLID plays a critical role. In [6],
authors employ CNN-based method to identify 5 languages,
with CNN classifier and spectrograms as features. However,
study in [6] fails to demonstrate hard-link relationship between
spectrograms and speech acoustics. In [7], authors use LSTM
as a classifier and obtained 86 % accuracy. ECAPA-TDNN
and MFCC30 have also been employed for SLID task, which
reported an accuracy of 76.8 % for 8 language classes. Many
other studies, were also reported for SLID task, with advance-
ment in self-supervised learning based pre-trained models,
such as whisper [8], wav2vec2.0 [9], HuBERT [10], and XLS-
R [11]. Proposed methodology provides the following novelty
:

• This study discussed how the energy of vocal tract system,
and non-linearity in speech signal contribute to language-
specific information for SLID task.

• Technical reasoning on energy difference of signals of
different languages.

• As the SLI task should be robust against smaller speech
segments, we show our model’s latency period for the
proposed TECC features and also for fair comparison with
existing works [5].

• For improvement of results, we also did various types of
fusion, namely, feature-level, and score-level.

II. PROPOSED APPROACH

In this Section, we explain the motivation for TEO, devel-
opment of TEO, and computational detail’s of TECC feature
extraction.

A. Energy of Real Physical System

In [12], authors proposed that within a single pitch period,
speech can be represented as a combination of signals, where
the amplitude and frequency vary over time, known as AM-
FM signals. This implies that Simple Harmonic Motion (SHM)
can help to explain the concept of energy in speech wave.
By applying Newton’s second law of motion to the mass-
spring system with spring constant C and mass N , it gives
the dynamics as the 2nd order linear differential equation [13]
:

d2y

dt2
+
C

N
y = 0, (1)

whose solution is recognized as Simple Harmonic Motion
(SHM) :

y(t) = A cos(Ω0t+ ϕ), (2)

where A is amplitude, and Ω0 denotes the angular frequency
(in radians) of oscillations. The previous solution can explained
in following way. Any periodic function can be decomposed
into Fourier series, which consists of an infinite sum of sine

waves of varying frequencies. The general solution of such
a 2nd order linear differential equation, where C and N are
positive constant, form e±j

√
(C/N) which ultimately results

the form y(t) = A cos(Ω0t+ ϕ) [14].
The total energy consists the combined potential energy in

the spring and the kinetic energy of the mass, i.e,
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Substituting y(t) = A cos(Ω0t+ ϕ) and using trigonometry,

E =
1

2
NA2Ω2, (4)

Or, E ∝ A2Ω2
0. (5)

Eq. (2) is the true energy required to generate y(t) in SHM.

B. Development of TEO

Kaiser proposed following algorithm for continuously es-
timating the energy level present in a signal, or the energy
needed to generate the signal [3]. In discrete-time domain Eq.
(2) can be expressed as:

y(n) = A cos(ω0n+ ϕ). (6)

From (6), we can write:

y(n+ 1) = A cos(ω0(n+ 1) + ϕ), (7)

y(n− 1) = A cos(ω0(n− 1) + ϕ). (8)

Multiplying (7) and (8) and using trigonometry,

y(n+ 1)y(n− 1)

= A2 cos(ω0(n+ 1) + ϕ) cos(ω0(n− 1) + ϕ),

= [A cos(ω0n+ ϕ)]2 −A2 sin2 ω0.

(9)

Using Eq. (6) in Eq. (9),

A2 sin2 ω0 = y2(n)− y(n+ 1)y(n− 1). (10)

For low values of ω0, sinω0 ≈ ω0, hence Eq. (10) can be
written as

A2ω2
0 ≈ y2(n)− y(n+ 1)y(n− 1) = ψ{y(n)}, (11)

where ψ{.} is the TEO, which gives a running estimate of
the energy of discrete-time signal x(n). Fig. 1 represents func-
tional block diagram of proposed SLID system using TECC
features. TECC is known to capture energy of the vocal tract
system and the non-linearities in the speech signal, which plays
an crucial roles in extracting language-specific information.
This energy is reflected in the formant frequencies, which are
the resonant frequencies of the vocal tract system. Different
languages utilize distinct sets of vowel and consonant sounds,
which are characterized by their formant frequencies. The
energy distribution across different frequency bands (spec-
tral envelope) provides information about the articulation of
phonemes. Different languages have unique spectral patterns
due to their specific phoneme inventories, which may be key
acoustic cue for SLID problem. The energy patterns also reflect
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Fig. 1. Functional block diagram of proposed SLID system using TECC features, with ResNEt-50 / CNN classifier.

prosodic features, such as stress, rhythm, and intonation, which
vary between languages and convey important linguistic infor-
mation. The non-linear nature of speech production mechanism
creates harmonics and overtones, which are crucial for the
perception of timbre and the distinction of different phonetic
elements. These patterns are also language-specific and can
be used to identify phonemes and prosodic features. Hence,
TECC works better with MFCC, and LFCC combined after
data fusion for SLID task (to be discussed soon).

III. EXPERIMENTAL SETUP

A. Dataset Used

We employed statistically meaningful VoxLingua107
dataset, which is a comprehensive multilingual speech corpus,
designed for training language identification models. It
comprises over 6,800 hours of speech data spanning 107
different languages. The recordings in this dataset are sourced
from YouTube, ensuring a diverse range of accents, dialects,
and speaking styles. The dataset is annotated at the segment-
level, allowing for precise language identification. It includes
a variety of speech contexts, such as news, conversations,
and lectures. We selected 10 languages, namely (labels),
Hindi (hi), English (en), French (fr), Mandarin Chinese (zh),
Russian (ru), Arabic (ar), Portuguese (pt), Sanskrit (sa),
Spanish (es), and Vietnamese (vi). 4000 random samples
from each language were taken to conduct experiments,
with average time spam of 9.4 seconds for each sample (1K
samples ranging from each range {0-5, 5-10, 10-15, and
15-20 seconds}). We accounted around 11.3 hours of data for
each of 9 languages (for Sanskrit, 9 hours data was taken),
resulting into a total of 111.16 hours of vast data.

B. Classifiers Used

1) ResNet-50: ResNet contains four blocks within each
block. The first block has three convolutional layers, followed
by four, six, and three convolutional layers, respectively. Batch
normalization and ReLU activation functions are applied after
each convolutional layer. After the main blocks, there is a
global average pooling layer that reduces the spatial dimen-
sions of the feature maps. This is followed by a fully-connected
layer with a softmax activation function, which produces the
final output probabilities for different classes. This architecture
is also known as ResNet-50 [15].

2) Time Delay Neural Networks (TDNN): Motivated by
previous works on SLID, authors in this study also decided
to employ TDNN as classifier [5]. The TDNN architecture’s
ability to process sequential data and capture long temporal
contexts proves advantageous for SLI tasks [16]. The incorpo-
ration of an attention mechanism facilitates the emphasis on
more prosodically and linguistically significant frames within
an utterance, enhancing the model’s performance. The input
shape to both the classifiers was constant, i.e., 20 * 750 (num-
ber coefficients*maximum number of frames). In SLID task,
some frame-level features within an utterance exhibit more
pronounced and unique prosodic characteristics. To tackle this,
study reported in [17] has integrated attention mechanism
to assign weights to these frame-level features. Specifically,
[18] employs this attention mechanism on TDNN for SLID.
With similar motivation, this study also employs an attention
mechanism.

C. Cepstral Features Used

We employed MFCC and LFCC as baseline features for
comparison with TECC. MFCC, and LFCC well known to
capture human perspective-based characteristics, on Mel scale
(human auditory scale), as well as linear scale, gives an perfect
case, which can be compared with TECC, that captures energy
of vocal tract system, and the non-linearity as in speech signal.
MFCC has high resolution on low-frequency region, and has
low resolution at high-frequency regions. LFCC on other hand,
has linear frequency resolution across entire frequency axis.
Such characteristics help in covering all necessary aspects for
classification of speech signals based on a particular language.
We employed static features for both MFCC and LFCC, of
variable dimension (soon to be discussed in sub-Section IV-A),
and for each feature sets, the frame length was kept to be 30
ms, and shift was 15 ms. Number of subband filters was taken
as 40 (fixed for all the feature sets for fair comparison), and
NFFT was taken to be 512.

IV. EXPERIMENTAL RESULTS

A. Effect of Dimension of Feature Vector

The dimension of feature vector is the number of coefficients
per audio frame (i.e., speech segment) obtained from speech
signal after framing and windowing. As number of coefficients
per frame increase, the extracted amount of features per unit
file increases, resulting in more storage, space, and time
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complexity (for both feature extraction and classification task).
However, with more amount of data per frames, we can’t get
more clarity on data, that which data belongs to which class,
thereby leading to cutting edge classification of classes. On
the other hand, while number of coefficients increase than
maximum number of required coefficients, then it starts over-
fitting the model, leading to declassification of the model.
For fair comparison with cepstral features, we also fine-tuned
both comparative cepstral features. For MFCC, we obtained
optimal feature dimension as 20, whereas for LFCC, and
TECC, we obtained optimal feature dimension as 16. We
obtained accuracy of 96.37 % for LFCC, and 76.37 % for
TECC on ResNet-50 classifier as shown in Fig. 2. All the
experiments of this sub-Section were performed using TDNN
and ResNet-50 classifiers. Results of TDNN classifier were not
as much good as for ResNet classifier, thereby the results of
TDNN feature dimention can be found on1. We got results
of TECC feature vector better on ResNet-50 classifier and
hence, we selected ResNet as optimal classifier. Although we
are getting much less accuracy on proposed TECC vector, we
decided to explore data fusion of features to obtain possible
complimentary observations.

Fig. 2. Effect of dimension of feature vector using ResNet-50 classifier.

B. Effect of Number of Language Classes

With increase in number of languages, the complexity of
data points increases, i.e., the probability of classifier clas-
sifying the data point correctly decreases. With a logistical
observation, as the number of class increase, the number of
clusters of data points formed increases, resulting in a more
degraded classification performance. As the data points that
have closely resembling phonemes, vowels may result into
unequal classification of languages. Similar observations have
been made around 17 years ago with two similar-sounding
languages (namely, Hindi and Urdu) with TEO operator itself
[19]. Fig. 3 denotes the decrease in accuracy with increase in
number of languages. Similar observations can be made for
both the comparative cepstral features, as well.

1”https://github.com/ARTHARKING55/TDNN dimention/tree/main”

Fig. 3. Variation in accuracy with increase in number of language classes.

C. Score-Level Fusion

We examine score-level fusion in order to increase the ac-
curacy of TECC features in this sub-Section. For comparison,
we fused all three features, i.e., LFCC+MFCC, LFCC+TECC,
and MFCC+TECC on both classifiers. As we obtained better
results on ResNet-50 classifier and hence, we did all the
experiments of this sub-Section on ResNet-50 classifier. Score-
level fusion includes parameter, namely, α. Score-level fusion
can be calculated by following formula :

ScoreTECC(α) + ScoreMFCC(1−α) = Scorefusion. (12)

We obtained highest of 86.62 % of accuracy for 10 language
classes, which is 3.42 % higher than individual optimal ac-
curacy obtained for 10 languages. Fig. 4 denotes score-level
fusion on MFCC and LFCC features. Fusion of all other
features can be found at1.

Fig. 4. Score-level fusion of MFCC and LFCC on ResNet-50 classifier.

D. Feature-Level Fusion

This sub-Section exploits feature-level fusion after explor-
ing score-level fusion. Motivated by increase in accuracy at
higher number of languages on score-level fusion, we explored
feature-level fusion in order to examine the change in accuracy.
Feature-level fusion can be also as stack fusion, as it is
classification of two or more features, by stacking it one over
other. We did double fusion as well as triple fusion in this
study.
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Fig. 5. Feature-level fusion of features on both TDNN and ResNet-50
classifier.

In Fig. 5, an increase in accuracy of ≈ 4% can be ob-
served for two languages as compared to individual accuracies.
We can further say from these observations that, combined
information of signal, i.e., energy of vocal tract system,
nonlinearity in speech signal (TECC), human perception of
audio information (MFCC), and linear frequency resolution-
based human perception (LFCC), combine perform better than
MFCC, LFCC, and TECC alone. Due to limited resources and
time, we could not do feature-level fusion of more than two
languages (Hindi and English), thereby leaving it to future
tasks.

E. Analysis of latency Period

Latency Analysis (LA) of SLID leverages capability of
system to its real-time development and usability. LA helps
in finding out that in how much less time and storage, we
can obtain promising results with acceptable performance. LA

Fig. 6. Analysis of latency period using ResNet-50 classifier.

thereby helps in saving storage and time both. Moreover, from
practical system deployment perspective, latency analysis is
one of the key factor for evaluation of any systems’ capability.
LA have also been performed on SLID task previously in
[5]. For fair analysis, we performed latency analysis on both
cepstral features also and have reported them in Fig. 6. Obser-
vation of Fig. 6, denotes that even after selecting 350 frames

instead of 750 frames, we see an accuracy decrease of only
0.62 %, whereas for MFCC and LFCC, accuracy decreased
by 1.99 % and 2.25 %. This decrease in frames and minor
decrease in results denote the superiority of proposed TECC-
based model over the other models in realistic scenarios.

F. Comparison with Existing Studies

This sub-Section compares the proposed work with existing
works on SLID task. Most of studies do not employ full
dataset of VoxLingua107, due to limitations of resources and
storage. We compared our results with various studies that
have variable languages. Table I denotes the comparison of
proposed methods with existing methods. For fair comparison,
we compared our results with same number of language classes
as in existing works.

TABLE I
COMPARISON WITH EXISTING WORKS AND PROPOSED WORK ON

DIFFERENT NUMBER OF LANGUAGES.

Source Number of
Languages Existing Results (in %) Proposed Results (in %)

Accuracy EER Accuracy EER
[20] 2 - 2.26 98.25 1.75
[20] 3 - 53.27 92.67 5.5
[21] 4 80.21 - 92.88 4.75
[22] 6 83 - 87.54 7.47
[23] 8 70.9 - 86.72 7.58
[24] 10 - 50 84.25 8.75
[25] 3 83.50% - 92.67 5.5
[26] 5 88.41 7.24 91.75 5.15
[27] 10 - 11.35 84.25 8.75
[28] 6 - 8.4 87.54 7.47

V. SUMMARY AND CONCLUSIONS

In this study, we employed TECC feature vector, which
captures vocal tract energy from the audio speech of spoken
languages. TECC offers competitive performance compared to
traditional MFCC and LFCC features for SLID tasks. ResNet-
50 demonstrates superior effectiveness in utilizing TECC fea-
tures, achieving higher accuracy than TDNN, For better real
implementation of model proposed, we also performed various
fusion techniques, in which it will enhance the classification
accuracy of SLID. In order to compare our study to other
existing approaches, in Section IV, we compared our results
with existing optimal approaches for SLID, and found to be
better.
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