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Abstract—The topic of speech separation involves separating
mixed speech with multiple overlapping speakers into several
streams, with each stream containing speech from only one
speaker. Many highly effective models have emerged and pro-
liferated rapidly over time. However, the size and computational
load of these models have also increased accordingly. This is
a disaster for the community, as researchers need more time
and computational resources to reproduce and compare existing
models. In this paper, we propose U-mamba-net: a lightweight
Mamba-based U-style model for speech separation in complex
environments. Mamba is a state space sequence model that
incorporates feature selection capabilities. U-style network is a
fully convolutional neural network whose symmetric contracting
and expansive paths are able to learn multi-resolution features.
In our work, Mamba serves as a feature filter, alternating with
U-Net. We test the proposed model on Libri2mix. The results
show that U-Mamba-Net achieves improved performance with
quite low computational cost.

I. INTRODUCTION

Speech separation in complex environments is one of the
most challenging branches of speech separation. Noise, rever-
beration, and other factors severely interfere with the desired
signal, making it even more difficult to capture long-term
dependencies, which has long been valued by the speech
separation community [1].

In the endeavor to capture long-term dependencies, recurrent
neural networks (RNNs) are the first popular structure that
demonstrates effectiveness on both time-frequency [2] and
time-domain processing [3]. In time-domain separation, RNNs
are typically used in conjunction with dual-path (DP) structure
[3]. The DP structure assists the network in modeling global
information, complementing the processing of local informa-
tion. Later on, self-attention mechanism like Transformer [4],
as an alternative to RNNs, that allows parallel computing is
introduced into the DP structure [5]. As for drawbacks, the DP
structure adds extra computational overhead, and the quadratic
scaling of the self-attention mechanism in transformers also
make training time-consuming and resource-intensive, which
has been a growing consensus and concern in this community.

The cascaded multi-task learning (CMTL) methods ad-
vocates solving complex speech separation task structurally
[1]. Concretely, it decomposes a complex task into simpler,

sequential sub-tasks. Through progressive supervision, cas-
caded multi-task structure can achieve further improvements
in performance. However, due to the stacking of sub-modules,
CMTL cannot effectively control the size of the model. Worse
still, there may be gradient conflicts between modules, which
significantly limits the model’s capabilities [6].

In this work, we shed light on U-net, which though was
developed for biomedical image segmentation [7]. The U-net
architecture consists entirely of convolutional neural layers,
making it compact in size and low in computational complex-
ity. Demucs [8] and SuDoRMRF [9] are successful attempts at
using the U-Net architecture for music sound separation and
audio source separation, respectively. To address its inability
to learn global relationships, we add a Mamba module after
each U-Net block. Mamba is a selective structured state space
sequence model [10]. Concretely, Mamba features high-order
polynomial projection operators (HiPPO) initialization and
input-dependent structure while maintain linear computational
complexity. HiPPO initialization assists in decomposing sig-
nals into basis functions [11]. We conduct experiments in the
simulated noisy and reveberant version of open-source public
dataset Libri2mix [12]. According to performance comparison
of proposed model and previous models, we find that U-
Mamba-Net is not only able to performance better cross
various metrics, but also achieve so with low computational
resource.

II. PROPOSED U-MAMBA-NET

U-Mamba-Net consists of an encoder, U-Mamba blocks, and
a decoder, similar to the prevailing structures used previously
[13]. The encoder is a 1-dimensional convolutional layer
that maps waveform to time-frequency like representation. U-
Mamba blocks aim to learn features with high representational
capability. A convolutional layer following U-Mamba blocks
assists estimating masks for all sources. After applying the
estimated masks to the representations of the mixed speech,
the features of all sources are decoded by the 1-dimensional
transposed convolutional layer, resulting in the final separated
speeches, The overview is illustrated in Fig. 1.



(a) U-Mamba-Net overview. 

(b) Illustration of U-net (left) and Mamba (right).
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Fig. 1. Overview of U-Mamba-Net.

A. U-Mamba blocks

Given the feature X ∈ RF×T of a noisy and reverberant
mixed speech, the goal of the B stacked U-mamba blocks
is to estimate robust representation M ∈ RF×T . Then, a
convolutional layer helps to generate masks equal to the
number of sources S. As the core part of our proposed model,
one U-Mamba block mainly owns a U-net module and a
Mamba module. The U-net module is composed of L suc-
cessive downsampling and upsampling layers, with each pair
of sub-layers at corresponding depths connected by residual
connections. Subsequently, the output of the U-net is fed into
the Mamba module. The U-Mamba block outputs the estimated
representations with another residual connection to the output
of the U-net in this module. The detailed statement is presented
in Algorithm 1.

B. Mamba

Mamba is an extension of state space models (SSMs) [14].
SSMs formulates a mapping from x(t) ∈ RF to y(t) ∈ RF

via hidden state space h(t) ∈ RN :

h
′
(t) = Ah(t) +Bx(t) (1)

y(t) = Ch(t) +Dx(t) (2)

where A ∈ RN×N , B ∈ RN×F , C ∈ RF×N , and D ∈ RF×F

are state matrices. N is number of state space dimension.

Algorithm 1 An algorithm for b-th U-Mamba block
Input: M b, L
Output: M b+1

D(0) ← PReLU(LN(BottleNeckConv(M b)))
▷ Bottle Neck Convolution

l← 1
while l ≤ L do ▷ Downsampling

D(l) ← LN(Conv1D(D(l−1)))
l← l + 1

end while
l← L
U (L) ← D(L)

while l ≥ 1 do ▷ Upsampling
U (l−1) ← T-Conv1D(U (l)) + D(l−1)

▷ Residual connection
l← l − 1

end while
M b ← PReLU(U (0))
M b+1 ← Mamba(M b) + M b

▷ Mamba module and residual connection
return M b+1

Based on the continuous form above, its discrete form can
be formulated by:

ht = Aht−1 +Bxt (3)

yt = Cht +Dxt (4)

where A and B are discretized parameters, which are con-
verted from A, B, and a step parameter ∆ using bilinear
method:

A = (I − ∆

2
A)−1(I +

∆

2
A) (5)

B = (I − ∆

2
A)−1∆B (6)

C = C (7)

D = D (8)

System in equations 3 and 4 can be rewritten as a convolu-
tional form of structured kernel K and input x.

y = K ∗ x,K = (CB,CAB, · · · ,CA
T−1

B) (9)

Structured SSMs (S4) feature a HiPPO initialization instead
of random initialization, which is confirmed to easier decom-
pose representation into orthogonal polynomials.

Mamba improves S4 with a selective mechanism [10].
Concretely, it adds input-dependency into SSM matrices via
parallel scan algorithm, Furthermore, state variables are kept
in SRAM, which holds a fast and efficient GPU memory
hierarchy. Mamba is illustrated in the right part of Fig. 1b.
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TABLE I
REVERBERATION CONFIGURATION.

Room
L (m) U (5,10)
W (m) U (5,10)
H (m) U (3,4)

T60 T (s) U (0.2,0.6)

Receiver
L (m) Lroom

2
+ U (-0.2,0.2)

W (m) Wroom
2

+ U (-0.2,0.2)
H (m) U (0.9,1.8)

Sources
H (m) U (0.9,1.8)

Dist. (m) U (0.66,2)
θ U (0,2π)

TABLE II
HYPERPARAMETERS OF U-MAMBA-NET.

Encoder / Decoder channel / window / hop F / - / - 128 / 41 / 20
U-net Input / output channel - 128

Mamba Input / output channel - 128
U-net Down / upsampling depths L 4

U-Mamba Number of repeat core B 16
Sources - S 2

III. EXPERIMENTS

A. Datasets

We use open-source mixture dataset Libri2mix to conduct
experiments [12]. Source audios are from Librispeech, ambient
noises are sampled from WHAM! [15]. As for simulation of
indoor surrounding, we exploit Pyacousticroom toolkit to gen-
erate reverberant version of clean source [16]. The simulated
mixture is produced by adding each reverberant source and
ambient noise together in time domain. The configuration of
indoor reverebration is shown in Table I. T60 represents the
reverberation intensity, indicating the time required for the
sound energy to decay by 60 dB. As a result, our training,
validation, and test datasets owns 13900, 3000, 3000 samples,
respectively. All the samples are in 8 kHz.

B. Network

The basic hyperparameters that we use are exhibited in Table
II. For the ablation studies, we indicate different parameter
while keeping the same alphabet symbols. Additionally, we
evaluate several different upsampling methods. Besides T-
Conv1D, we also investigate the nearest neighbor (NN) and
linear upsampling techniques.

C. Training phase

We train the proposed model on GeForce 4070Ti Super
with a batch size of 4 and initial learning rate of 0.00015.
Each sample is randomly cut into 3-s long. Notably, we
report the computational load based on the input utterance
with this length. We set the maximum epoch at 120. As
for objective function, we adopt permutation-invariant scale-
invariant single-to-noise ratio (SI-SNR) [13], shown as follows:

L = −max
π∈P

1

I

∑
i

SI-SNR(ŝπ(i), si) (10)

where π is the best permutation mapping set that allow overall
SI-SNR to achieve maximum [17].

TABLE III
MAIN RESULTS.

Methods CMTL SI-SNRi SDRi SIRi #Param (M) GMACs
TasNet [22] 5.70 5.05 10.84 23.2 M 27.8
SuDoRM-RF [9] 2.90 3.36 6.14 2.6 M 3.6
SuDoRM-RF+ [9] 5.33 6.05 11.02 2.7 M 3.0
Conv-TasNet [13] 6.88 7.17 14.32 6.3 M 18.7
DPRNN [3] 7.59 7.88 15.16 3.7 M 23.9
DPRNN 8.08 8.62 16.39 5.6 M 40.2
U-Mamba-Net 8.50 8.62 17.67 4.4 M 2.5

D. Evaluation phase

SI-SNR improvement (SI-SNRi) is an extension of SI-
SNR, it checks how much information get excluded from
mixture, we use SI-SNR improvement (SI-SNRi). We use
signal-to-interference ratio improvement (SIRi) for separation
effectiveness [18]. At the perceptual aspect, we use short-time
objective intelligibility (STOI) [18] and perceptual evaluation
of speech quality (PESQ) [19]. For denoising performance,
we use predicted rating of speech distortion (CSIG), predicted
rating of background distortion (CBAK), and predicted rating
of overall quality (COVL) [20]. Additionally, we present the
model size and computational load in terms of Giga Multiply-
Add Operations per Second (GMACs) [21].

IV. EXPERIMENTAL RESULTS

A. Main results

We compare the results of U-Mamba-Net with several
previous models in Table III. In the implementation of CMTL
using DPRNN, we adopt an Enhancement Priority Pipeline
(EPP). We can observe that, firstly, the proposed U-mamba-
net achieves the best results cross major metrics. It is 0.92 dB
better than DPRNN in SI-SNRi. Compared to CMTL, which
uses DPRNN as sub-modules, U-mamba-net is still 0.42dB
higher. Moreover, U-Mamba-Net model size is 20% smaller
than DPRNN (CMTL). Most importantly, its computational
efficiency (measured in GMACs) is only one-sixteenth of that
of DPRNN (CMTL) (2.5 vs. 40.2) and one-ninth of that
of DRRNN (2.5 vs. 23.9). This strongly demonstrates the
proposed model’s high efficiency and effectiveness.

B. Performance of perceptual quality and denoising effective-
ness

TABLE IV
PERCEPTUAL AND DENOISING PERFORMANCE.

Methods CMTL STOI PESQ CSIG CBAK COVL
SuDoRM-RF+ 65.92 1.52 2.37 1.61 1.84
Conv-TasNet 69.61 1.60 2.58 1.76 2.00
DPRNN 71.86 1.67 2.65 1.83 2.07
DPRNN 73.19 1.75 2.75 2.16 2.18
U-Mamba-Net 73.99 1.70 2.56 1.89 2.05

In this section, we compare the U-Mamba-Net with previous
models in terms of perceptual quality and denoising perfor-
mance in Table IV. In terms of the STOI metric, U-Mamba-
Net consistently maintains its advantage, just as the results and
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TABLE V
ABLATION STUDIES.

F R L Upsampling SI-SNR SI-SNRi SDRi SIRi STOI (%) PESQ CSIG CBAK COVL #Param (M) GMACs
64 16 4 T-Conv1D 1.29 7.12 7.59 14.64 70.59 1.60 2.52 1.75 1.97 1.3 M 0.7
128 12 4 T-Conv1D 2.31 8.14 8.39 16.31 73.28 1.68 2.53 1.85 2.02 3.3 M 1.9
128 16 4 T-Conv1D 2.67 8.50 8.62 17.67 73.97 1.70 2.53 1.89 2.04 4.4 M 2.5
128 20 4 T-Conv1D 2.76 8.59 8.76 17.46 74.25 1.71 2.56 1.90 2.06 5.5 M 3.1
128 16 8 T-Conv1D 2.59 8.42 8.52 17.39 73.72 1.69 2.50 1.87 2.01 4.6 M 2.5
128 16 4 NN 2.70 8.52 8.66 17.44 73.99 1.70 2.56 1.89 2.05 4.4 M 2.5
128 16 4 Linear 2.70 8.53 8.70 17.54 74.06 1.71 2.55 1.89 2.05 4.4 M 2.5
192 16 4 T-Conv1D 3.02 8.85 8.90 18.15 74.87 1.74 2.64 1.93 2.11 9.7 M 5.3

conclusions in the previous section. It also shows superiority
in PESQ, CSIG, CBAK, and COVL when compared to all
models except DPRNN (CMTL). However, DPRNN (CMTL)
outperforms U-Mamba-Net in these metrics, particularly in
CBAK. This indicates that a single-task model’s performance
on specific sub-task is not as effective as that of a CMTL
architecture incorporating additional processing modules. We
believe the reason is that DPRNN (CMTL) can leverage addi-
tional information like noise-free mixture as intermediate label
to supervised model in a step-by-step manner. This suggests
that combining specialized modules in a multi-task framework
can offer superior performance by addressing various aspects
of the problem more comprehensively.

C. Ablation studies

To better understand the role of each parameter in the model,
we design several ablation experiments. Their results are
displayed in Table V. Firstly, the impact of feature dimensions
on the model is most noticeable. As the feature dimension F
increases from 64 to 128 to 192, the separation performance
significantly improves like in SI-SNRi from 7.12 dB to 8.50
dB to 8.85 dB, but the model size also increases accordingly.
Increasing the number of U-mamba-Net blocks R also en-
hances the model’s performance, although the improvement
is not as pronounced. With 20 blocks, the model reaches an
SI-SNRi score of 8.59 dB. Increasing the depth L of the
model has a negative effect on the test set. We speculate that
for separation tasks, excessively low resolution may not be
beneficial. Using NN and linear upsampling method though
has a subtle improvement on the test set, we observe a
decreased performance in the validation set during training.
Therefore, upsampling methods are less critical than any other
hyperparameters else.

D. Visualization

This section visualizes an example of separation results
using DPRNN and U-Mamba-Net in Fig 2. First, from the
spectrograms of the results, both DPRNN and U-Mamba-Net
exhibit effective denoising and dereverberation, as evidenced
by the clarity of the spectrograms of separations. Regarding
the separation results, DPRNN exhibits more erroneous sepa-
rations, where information originally belonging to one source
is allocated to another source. This issue is highlighted by the
red boxes in the figure. We believe this problem arises from the

Fig. 2. Spectrogram of separation results. The sole spectrogram in the first
row is noise and reverberant mixture. The following two spectrograms in
the second row are ground truths. Third row are displaying the spectrograms
of two separated results by DPRNN model. The last two are estimation of
U-Mamba-Net. The red boxes highlight the places where DPRNN makes
wrong separation but U-Mamba does not. The white box outlines the place
where U-Mamba-Net performs worse. Because the fundamental frequencies
and harmonics of U-Mamba-Net are not as clear as those of the DPRNN.

model’s less robust modeling of long-term dependencies. U-
Mamba-Net also has some weaknesses. For instance, as shown
in the white boxes, the generated speech spectrogram lines
are not as clear as those produced by DPRNN. Even worse,
when we listen to the separated speech, its perceptual quality
remains relatively low, which is consistent with the STOI score
indicated in the previous sections.

V. CONCLUSIONS

In this work, we proposed a lightweight U-Mamba-Net for
noisy and reverberant speech separation. U-Mamba-Net not
only demonstrates impressive separation capabilities but also
maintains low computational load. In terms of SNR category
metrics, it surpasses many previous models, demonstrating its
overall robust separation capability. However, it still shows sig-
nificant gaps in denoising and other specific metrics compared
to CMTL.
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