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Abstract—Zero-shot text-to-speech (ZS-TTS) is a TTS system
capable of generating speech in voices it has not been explicitly
trained on. While many recent ZS-TTS models effectively capture
target speech styles using a single global style feature per speaker,
they still face challenges in achieving high speaker similarity
for voices that were not previously encountered. In this study,
we propose StylebookTTS, a novel ZS-TTS framework that
extracts and utilizes multiple target style embeddings based on
the content. We begin by extracting style information from target
speeches, leveraging linguistic content obtained through a self-
supervised learning (SSL) model. The extracted style information
is stored in a collection of embeddings called a stylebook, which
represents styles in an unsupervised manner without the need for
text transcriptions or speaker labeling. Simultaneously, the input
text is transformed into content features using a transformer-
based text-to-unit module, which links the text to the SSL
representations of an utterance reading that text. The final target
style is created by selecting embeddings from the stylebook
that most closely align with the content features generated
from the text. Finally, a diffusion-based decoder is employed to
synthesize the mel-spectrogram by combining the final target style
with the content features generated from the text. Experimental
results demonstrate that StylebookTTS achieves greater speaker
similarity compared to baseline models, while also being highly
data-efficient, requiring significantly less paired text-audio data.

I. INTRODUCTION

Text-to-speech (TTS) is a technology that converts writ-
ten text into spoken language by passing it through various
processing stages. In recent years, TTS systems have made
substantial progress thanks to the advent of deep learning
techniques [3]–[8], enabling their use in applications such
as speech-based virtual assistants and accessibility tools for
individuals with disabilities. Traditionally, TTS systems have
been developed using text paired with the acoustic features of
speakers encountered during training.

Recently, there has been increasing interest in generating
voices for new speakers—who were not included in the
training data—using only a few seconds of their speech sam-
ples. This approach is referred to as zero-shot multi-speaker
TTS (ZS-TTS). Traditional ZS-TTS models [9]–[17] typically
extract a global speaker embedding from the input speech
using an external speaker encoder. This embedding is then
used as a conditioning factor within the TTS framework. They
demonstrate outstanding performance in synthesizing speech
that closely resembles human-recorded utterances in terms of
both naturalness and intelligibility. However, these networks
continue to face challenges in bridging the similarity gap

between observed and unobserved speakers during training.
This issue arises because they rely on a single global vector
to condition all the frames, which inadequately captures and
transfers the target speaker’s style to the generated speech
from text. Although this issue can be mitigated by fine-tuning
the pre-trained TTS network with a few seconds of speech
samples from the desired speaker [12], this process is both
time-consuming and memory-intensive for each new speaker.

In this work, we propose StylebookTTS, a zero-shot TTS
framework that utilizes multiple target style representations
during synthesis to enhance speaker similarity with the target
speaker. StylebookTTS is built upon the stylebook framework
[2], a speech analysis and synthesis method originally devel-
oped for any-to-any voice conversion. This framework cap-
tures diverse style representations based on linguistic content,
without requiring text transcription or speaker labeling during
training and inference. In the voice conversion framework,
various style embeddings for different frames are extracted
based on the source speech’s content embeddings, which are
derived from quantized self-supervised learning (SSL) features.
These style and content embeddings are then integrated in a
diffusion model [18] to produce the converted speech. To adapt
the stylebook framework for TTS applications, we introduce a
transformer-based [19] text-to-unit module that estimates the
speech unit (i.e., quantized SSL feature) corresponding to the
linguistic content of the speech from its text transcription. This
module is trained independently and is then integrated with
the pre-trained stylebook model to create the complete text-
to-speech network. Our experiments demonstrate that Style-
bookTTS achieves enhanced speaker similarity with unseen
target speakers and improved intelligibility, thanks to its use
of fine-grained, content-dependent style embeddings.

In addition to improved speaker similarity, our proposed
model efficiently utilizes small amounts of paired data. In
contrast to previous models that need to learn both the pronun-
ciation of sounds and speaker-specific style factors from paired
text-audio data, our framework delegates the style adaptation
to the pre-trained stylebook model. Instead, it focuses on es-
tablishing the relationship between text and its pronunciation,
as captured by the quantized SSL features. Ultimately, Style-
bookTTS requires significantly less paired data to achieve near-
optimal performance. These results indicate that this content-
based target style modeling methodology can deliver excellent
performance in speech synthesis tasks, even with limited paired



Fig. 1. Block diagram of the proposed text-to-speech framework utilizing pre-trained HuBERT [1] and a style extraction and application model [2]. During
training, a text-to-unit module is trained to estimate the quantized HuBERT feature from a given text. After trainig, the HuBERT model originally included in
the style application module is replaced with the trained text-to-unit module so that a speech can be generated from a text instead of a HuBERT feature.

data.
Our contributions are summarized as follows1:
• We extend the content-dependent stylebook network [2]

to the TTS domain, achieving high speaker similarity and
intelligibility with unobserved speakers, while maintain-
ing comparable overall speech quality.

• We demonstrate that our proposed StylebookTTS can be
efficiently optimized even with small amounts of paired
data by relying on external stylebook module, which has
been pre-trained in an unsupervised manner to handle the
complex style modeling.

II. RELATED WORKS

A. Zero-shot text-to-speech
Zero-shot text-to-speech aims to synthesize speech from a

text transcript and reference audio (or target speech) of an
unobserved speaker, ensuring that the characteristics of the
generated speech closely match those of the target speaker. The
goal is typically achieved by extracting style-related informa-
tion from the target speaker’s utterance and incorporating it as
a conditional feature into the TTS model during synthesis. For
style-related information, many previous works [9]–[12] have
commonly used a speaker embedding vector extracted by a
speaker verification model, which may be either pre-trained or
jointly trained with a classification loss. However, compressing
all style-related information into a single vector can lead to
information loss, which limits the style transfer capability of
the ZS-TTS system.

On the other hand, prompt-based approaches [13]–[17]
allow the model to directly access the acoustic features of the
target speech through the attention mechanism [19]. In contrast

1Audio samples are available at http://pineville17.github.io/StylebookTTS

to approaches that rely on a global speaker embedding, prompt-
based models can locally adapt the style at each time frame.
This results in better speaker similarity, regardless of whether
the model undergoes a discriminative learning process with
speaker labels [13]–[17]. However, these models inevitably
face increased computational costs as the length of the target
speech grows, since the attention layer must reference the
entire target utterance at each attention step.

Unlike the previous approaches, we employ stylebook [2]—
a collection of style embeddings each implicitly linked to
different linguistic content—as the source of style-related
information for conditioning a ZS-TTS model. By adopting
this approach, we achieve better speaker similarity compared
to models that use global speaker embeddings, and we fur-
ther enhance performance with longer target speech without
increasing computational costs during inference.

B. Speech analysis and synthesis using stylebook

The stylebook [2] model is an autoencoder-like speech
analysis and synthesis network originally designed for any-
to-any voice conversion. In this framework, target speeches
are first processed by the mel and style encoders, which
transform them into style embeddings. Simultaneously, the
target speeches are converted into HuBERT [1] representations
and undergo vector quantization to extract features related
solely to linguistic content, as done in [20] and [21]. The
obtained style and contents embeddings are fed into a multi-
head attention mechanism with a learned query set, resulting
in a set of embeddings—referred to as the stylebook— for
the given target speaker. Since the query set consists of
embeddings representing different content-related features, the
resulting stylebook forms a collection of embeddings that
capture various speaking styles of the target speaker. Similarly,
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source speeches are converted into content embeddings using
a HuBERT network and vector quantization. The model then
selects the appropriate style embeddings from the stylebook
by comparing the source speech’s content embeddings with
the stylebook entries using attention mechanisms. The ob-
tained embeddings are combined in a diffusion-based U-Net
model [22] to generate the mel-spectrogram of the converted
speech. Finally, a pre-trained HiFi-GAN [23] vocoder is used
to synthesize speech from the obtained mel-spectrogram. Dur-
ing training, the same speech is used as both the source and the
target. Here, the model is trained to effectively represent the
missing information lost during the quantization of HuBERT
features—typically, the detailed speaking style associated with
specific linguistic content.

The main contribution of the stylebook model is its use
of transposed dual attention to generate a stylebook that
represents the speaking style of a target speaker and to adapt
the style embedding at each time frame based on the content of
the source speeches. The content-dependent style embeddings
can be extracted without the need for text transcription or
speaker labeling, as the model is trained to reconstruct the
input itself following decomposition with HuBERT and vector
quantization. Additionally, since the number of embeddings
in the stylebook remains fixed regardless of the length of
the target speech, the stylebook model can leverage longer
target speeches without increasing computational costs once
the stylebook is extracted.

III. PROPOSED METHOD

In this work, we propose StylebookTTS designed to extend
the stylebook framework to a zero-shot text-to-speech (ZS-
TTS) system. StylebookTTS consists of two distinct compo-
nents: the stylebook network and the text-to-unit module. The
stylebook network, which follows the architecture outlined
in [2], handles both the extraction and application of the
stylebook, as shown in Fig. 1.

A. Text-to-unit estimation

The core component of our proposed method is the text-to-
unit (T2U) module, which estimates vector-quantized HuBERT
representations from the input text. This enables the network
to extract content embeddings from the input text, as vector-
quantization of SSL features effectively captures content in-
formation from the input speech.

The architecture of the text-to-unit module is inspired by
FastSpeech2 [4], a non-autoregressive TTS model known
for its high generation speed and excellent speech quality.
FastSpeech2 is designed to train pitch, energy, and duration
predictors during training, and incorporates the estimated pitch,
energy, and duration as conditions during inference, thereby
providing style information. In our text-to-unit module, we
omit the pitch and energy prediction components from Fast-
Speech2 to avoid confusion in capturing contextual informa-
tion. We retain the duration predictor to accurately estimate
phoneme durations, ensuring that the input text aligns well
with the HuBERT units. During inference, the text is processed

through the text encoder to generate phoneme embeddings.
The length regulator adjusts the duration of the input sequence
based on the predicted duration of each phoneme, indicating
how many discrete HuBERT unit frames correspond to each
phoneme. Subsequently, the unit decoder generates discrete
HuBERT units from the length-adjusted sequence.

Once the quantized SSL features are estimated from the
input text, they are fed into the content encoder and then
processed through the multi-head attention layer during the
stylebook application stage. This process facilitates the gen-
eration of speech that preserves the content of the given text
while closely resembling the style of the target speaker.

B. Training Method
The training process for the text-to-unit module involves

several key steps to ensure accurate prediction of the SSL
features and high speech quality. During training, both speech
and its corresponding text transcription are provided as in-
puts to the text-to-unit module. The target for estimation
is the discrete HuBERT representation, which captures the
content-related information from the input speech. A duration
predictor, similar to the one used in FastSpeech2, estimates
phoneme durations. This predictor utilizes the Montreal Forced
Alignment (MFA) tool [24] to obtain target durations for each
phoneme, ensuring precise alignment between the input text
and the target HuBERT representations.

As the module generates outputs, two loss functions are
utilized: duration loss and HuBERT loss. For the duration loss,
mean-squared error (MSE) is computed between the target
and predicted durations provided by the duration predictor,
ensuring that the predicted durations closely match the tar-
get phoneme durations. For the HuBERT loss, L1 loss is
used to optimize feature prediction accuracy by comparing
the predicted and target feature representations, which helps
maintain high fidelity in the synthesized speech. The overall
loss function for the T2U network is the sum of these two
loss components, combining their advantages to enhance per-
formance, as follows:

Ldur =
1

n
Σn

i=1(dtarget,i − dpred,i)
2, (1)

Lhub = Σn
i=1|hvqtarget,i − hvqpred,i|, (2)

LT2U = Ldur + Lhub, (3)

where d indicates the phoneme duration and hvq indicates
vector quantized HuBERT representations and n indicates the
number of data.

IV. EXPERIMENTS

A. Experiment settings
1) Dataset: We conducted experiments using the LibriTTS

dataset [25]. For training the T2U module, we randomly se-
lected 115,183 samples from 900 speakers, totaling 186 hours,
from the LibriTTS-train-clean-360 subset. For evaluating the
proposed StylebookTTS network, we chose 27 speakers from
the LibriTTS-test-clean subset and created target speeches with
varying lengths, ranging from 5 to 180 seconds.
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TABLE I
NATURALNESS EVALUATION RESULTS IN MOS RATINGS. SUBJECTIVE

MOS VALUES WITH 95% CONFIDENCE INTERVALS ARE SHOWN.

MOS ↑
Target Length 5 sec 180 sec

MetaStyleSpeech 2.72±0.13 2.93±0.13
YourTTS 2.69±0.13 2.63±0.13

StylebookTTS 3.57±0.12 4.00±0.09
Ground Truth 4.55±0.09

2) Model configuration: The model configuration of the
stylebook framework follows that of [2], specifically using
128 embeddings in the stylebook, and is pre-trained on the
same LibriTTS dataset. For the T2U module, the details
are as follows. The text encoder consists of 4 feed-forward
transformer (FFT) blocks, each with 2 attention heads and a
hidden size of 256. The unit decoder is comprised of 6 FFT
blocks, each with 2 attention heads and a hidden size of 256.
The duration predictor consists of 2 convolution layers with
a filter size of 256, a kernel size of 3, followed by a linear
layer. The number of parameters of StylebookTTS including
the T2U module and the stylebook framework is 77M.

B. Evaluation Methods
We analyze and evaluate our proposed system using four

metrics: mean opinion score (MOS) [26], ABX test preference
score, speaker embedding cosine similarity (SECS), and char-
acter error rate (CER). The MOS test assesses the perceived
quality of the generated speech through a subjective quality
evaluation. The ABX test compares two synthesized speeches
to determine which one exhibits higher speaker similarity to
the real target speech. MOS and ABX results were obtained
from evaluations involving 13 participants. SECS measures
how closely the speaker features of the generated speech
align with those of the target speech. We computed SECS
by extracting speaker embeddings from both the synthesized
and target speeches using the pre-trained ECAPA-TDNN [27]
network2 and calculated the cosine similarity between these
embeddings. CER indicates the intelligibility of the generated
speech. We computed CER by comparing the text of the source
speech with the text of the converted speech using a HuBERT
[1]-based automatic speech recognition (ASR) network3.

To evaluate performance based on the length of the target
speech, we tested various target speeches with lengths of 5,
10, 30, 60, 120, 180, and 300 seconds. For comparison, we
selected YourTTS [10] and Meta-StyleSpeech [11] as baseline
models for non-finetuning zero-shot TTS frameworks and used
their official implementations for synthesis.

C. Experiment results
1) Naturalness: Table I shows the MOS ratings for syn-

thesized speeches generated by both the baseline and pro-
posed networks for short (5 seconds) and long (180 seconds)

2https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
3https://huggingface.co/facebook/hubert-large-ls960-ft

Fig. 2. Evaluation results of the proposed StyleBookTTS and the baseline
models. (a) illustrates the SECS results and (b) shows CER (%) of various
ZS-TTS networks.

input target speech lengths. The results show that our pro-
posed StylebookTTS outperforms the baseline networks in
terms of naturalness, regardless of the target speech length.
Notably, as the target speech length increases, Stylebook-
TTS generates speech that is nearly as natural as human
utterances.

2) Speaker similarity: StylebookTTS aims to enhance the
speaker similarity of the synthesized voice to the original target
voice by collecting and applying target style embeddings in
a content-dependent manner. Fig. 2 (a) illustrates the SECS
trends for synthetic speeches generated by the baseline and
proposed models across various target lengths. In addition
to the two baseline models and the proposed Stylebook-
TTS, which uses multiple style embeddings (128 in this
case) to form the stylebook, we also present results for
another StylebookTTS network with a single style embed-
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Fig. 3. ABX test result between the proposed StyleBookTTS and the baseline
models. (a) illustrates the result when 5 seconds of target speech is introduced.
(b) shows the result when 180 seconds of target speech is introduced.

ding (StylebookTTS-global). The StylebookTTS-global can
be viewed as a global style embedding within the stylebook
framework. The figure demonstrates that, in terms of speaker
similarity, StylebookTTS outperforms both the baseline net-
works and the StylebookTTS framework using a global style
embedding to represent the target voice.

This trend is also evident in the ABX results. As shown in
Fig. 3, StylebookTTS demonstrates superior speaker similarity
compared to the baseline networks (p < 0.01 in all cases).
When only 5 seconds of target voice are used, 60% of listeners
preferred StylebookTTS over the baseline models for higher
speaker similarity. This proportion increases significantly as
the target speech length is extended to 180 seconds. Over 87%
of listeners indicated that the proposed model generates speech
that is more similar to the target speaker compared to YourTTS.
These results demonstrate that our content-dependent style
extraction approach enhances speaker similarity by extracting
multiple content-dependent target styles and applying the most
appropriate styles to match the content of the text.

3) Intelligibility: In addition to enhanced speaker similarity,
our approach achieves remarkable intelligibility as shown in
Fig. 2 (b). StylebookTTS achieves a CER of 1.66% with just
5 seconds of target speech, whereas Meta-StyleSpeech and
YourTTS show CERs of 3.45% and 2.75%, respectively. As the
target length increases, StylebookTTS continues to outperform
other networks in terms of intelligibility.

4) Data efficiency: In Fig. 4, we illustrate the objective
performance (SECS, CER) of our proposed model relative
to the size of the paired data used for T2U training. For
inference, 3 minutes of target speech were provided. Even with
only 5 minutes of paired data, our proposed model achieves
higher SECS compared to YourTTS trained on the full dataset.
This demonstrates that StylebookTTS effectively utilizes the
pre-trained stylebook model for style adaptation. Regarding
intelligibility, StylebookTTS trained with 3 hours of paired
data achieves performance comparable to YourTTS, which is
trained on over 245 hours of text-audio paired data. These

Fig. 4. Evaluation results (SECS and CER) regarding the length of the total
speech paired with the text transcription used to train the text-to-unit module.

results indicate that our content-based target style modeling
approach has the potential to deliver exceptional performance
in various speech synthesis tasks, including multilingual and
multi-modal synthesis, even with limited paired data.

V. LIMITATIONS AND FUTURE WORKS

Despite the improved performance in speaker similarity and
intelligibility demonstrated by StylebookTTS, there are still
some limitations to address. Since StylebookTTS models the
target style based on the content of the target speech, its
performance may be less reliable when the input target speech
is short and lacks sufficient content information. This issue
could be mitigated by conditionally combining global style em-
beddings with content-dependent style embeddings to address
content scarcity. Another limitation is that StylebookTTS-
generated speeches tend to have relatively monotonic prosody
compared to ground truth speech, despite the high speaker
similarity scores. Future research could address this by incor-
porating a separate variance adaptor to provide additional pitch
information for more refined prosody control.

VI. CONCLUSION

In this work, we present StylebookTTS, a zero-shot text-
to-speech (TTS) framework that synthesizes speech using
multiple content-dependent target style representations derived
from the given text. We developed a text-to-unit module that
establishes the relationship between text and its pronunciation
by utilizing quantized SSL features. The text-generated SSL
features are then fed into the stylebook network for style ap-
plication and synthesis. Our experimental results demonstrate
that this approach achieves superior speaker similarity and in-
telligibility compared to other zero-shot TTS frameworks that
rely on a single global style embedding. Furthermore, Style-
bookTTS outperforms baseline models even when trained with
a relatively small amount of paired text and audio data. This
work highlights the effectiveness of content-based target style
modeling in speech synthesis applications with limited paired
data, suggesting its potential for expansion into research areas
such as multilingual or multimodal synthesis.
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