
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Knowledge Augmented Attention Gating Embedding
for Link Prediction

Zewei Chen∗, Shuhong Chen∗, Chen Li†, Xianwei Zheng†, Minfan He† and Xutao Li∗
∗ Key Lab of Digital Signal and Image Processing of Guangdong Province, Department of Electronic Engineering,

Shantou University, Shantou, 515063, China
E-mail: 22zwchen@stu.edu.cn, 18shchen3@stu.edu.cn, lixt@stu.edu.cn

† School of Mathematics, Foshan University, Foshan, 52800, China
E-mail: fslichen@fosu.edu.cn, alexwzheng@fosu.edu.cn, heminfan1980@126.com

Abstract—Knowledge graphs (KGs) use graphical representa-
tions to illustrate relations between entities, forming a structured
knowledge base. However, KGs often suffer from incompleteness,
lacking some entities and their interactions. Current link pre-
diction technologies based on KG embeddings primarily focus
on learning entity features and relation patterns from existing
KGs to address the incompleteness issue. Yet, these methods
encounter the inherent sparsity issue in KGs—uneven distribution
of entity connections and scarcity of direct links. This complexity
challenges models in identifying intricate, potential associations,
thereby compromising link prediction accuracy and overall model
performance. In this paper, we introduce a innovative Knowledge
Augmented Attention-based Gating Embedding (KAAGE) frame-
work for link prediction. Our model augments knowledge by
reversing relations and triples, then integrates both original and
augmented structural data through gating units. Extensive exper-
iments on three established benchmark datasets demonstrate the
superiority of KAAGE over current models. Our implementation
code is available at https://github.com/22zwChen/KAAGE

I. INTRODUCTION

In recent years, KGs have played a critical role in nu-
merous domains and caught the attention of various research
communities, including information retrieval [1], [2], question
answering systems [3], [4], and recommendation systems [5],
[6]. These sophisticated repositories take the form of graphs,
encapsulating real-world entities and the complex networks of
relations that bind them together. Entities are represented as
nodes, symbolizing tangible objects or conceptual abstractions
found within reality, while relations serve as the interlinking
fabric delineating the connections among these entities within
the KG structure.

Despite their extensive coverage of relations, entities, and
triples, current KGs still struggle with issues of pronounced
data sparsity, diverse relational categories, and intricate hier-
archies. These challenges have spurred a wave of advanced
research aimed at improving knowledge graph completion.
Early logic-based approaches, such as HL-MRFs [7] and
CPRA [8], are limited by data sparsity and poor scalability.
Distributed representation schemes were then proposed to
translate entities and relations into points within a continuous
vector space, where mathematical operations can be used
to evaluate entity similarities, as demonstrated by RESCAL
[9] and TransE [6]. With the remarkable ability to discern
features, neural networks have become prominent in the field

of Knowledge Graph Embedding (KGE) learning. Neural-
network-driven methods, including DSKG [10] and KGQA
[11], autonomously learn representations by applying non-
linear transformations to remodel the feature distribution of
input data from its original space to a distinct feature space.
However, despite the significant progress made by these
methodologies, most do not strategically employ effective data
augmentation techniques to address the incompleteness of data.
Additionally, they often handle knowledge facts in isolation,
overlooking the structural context inherently woven into the
fabric of KGs.

In response to these challenges, we advocate for the inte-
gration of Graph Data Augmentation to enrich both the initial
and augmented structural information of KGs. Building on
the principles of CompGCN [12], we allow the information
in the directed edges of the knowledge graph to propagate
bidirectionally. We then incorporate an efficient gating mech-
anism that facilitates the harmonious integration of both the
original structural information and the augmented structural
information. Our key contributions are summarized as follows:

• To enrich knowledge graph, we implement knowledge
augmentation strategies, specifically including the con-
sideration of inverse relations and triples, which are
integrated with the knowledge graph to counteract its
sparseness.

• A gating unit is incorporated to merge the original struc-
tural information with the augmented ones, to dynami-
cally assessing how important each piece of information
is.

• Massive experimental results indicate that KAAGE frame-
work outperforms competitors on three standard bench-
mark datasets, particularly on the Kinship dataset.

The remainders of this paper are structured as follows:
Section II delves into the core of the matter, detailing the
key aspects and constituent parts. Section III provides an
examination of the proposed framework, mapping out the
essential methodologies that define its operation. Section IV is
dedicated to the empirical substantiation of KAAGE to validate
the framework’s effectiveness. In Section V, we encapsulate
the key contributions of this research and underscore their
importance.

https://github.com/22zwChen/KAAGE


II. PRELIMINARIES

A. Problem Definition

Knowledge Graph. We define E , R as the sets of entities
e and relations r, respectively. A knowledge graph is denoted
by G = (E ,R, T ) where T ∈ E ×R× E is the set of triples.
Each triple in T can be represented as (h, r, t) where h ∈ E
is head entity, t ∈ E is tail entity and r ∈ R is relation.

Link Prediction. To achieve link prediction, we compute
score for each triple (h, r, t) by our model. Specifically, our
model predicts the missing one in an incomplete triple such
as (h, r, ?) by a pre-designed scoring function ψ(h, r, t) ∈ R.

B. ConvE

ConvE, initially introduced by Dettmers et al. [13], revolu-
tionized the approach to link prediction in KGs. This model
leverages 2D convolutional operations and stacks of nonlinear
transformations to accurately predict missing links within KGs.
The scoring function for a triple within this framework can be
formally expressed as follows:

Ψ(ei, rk, ej) = f(vec(f([hi;gk] ∗ ω))W)ej (1)

where ei, ej , rk ∈ Rkhkw×1 represent the embeddings of the
head entity, tail entity, and relation, respectively. hi,gk ∈
Rkh×kw are 2D reshaped representations of head entity and
relation. A 2D convolution ∗ with kernel ω is applied to
[hi;gk], followed by activation f and linear transformation
W. Given its effectiveness, ConvE is adopted as the decoder
in our model.

C. Gating unit

To balance diverse features for KG embedding, we incorpo-
rate an adaptive, learnable gating unit that dynamically merges
them as follow:

g = σ(Wgeei +Wgaa+ b), (2)

u = τ(Wu(ei ⊕ a)), (3)

e = g ⊙ u+ (1− g)⊙ ei, (4)

where ei ∈ Rd1 , a ∈ Rd2 are input embeddings. This unit
employs linear transformations Wu ∈ Rd1×(d1+d2), Wge ∈
Rd1×d1 , and Wga ∈ Rd1×d2 , along with a bias b. σ is the
sigmoid function, and τ is hyperbolic tangent function. Impor-
tantly, the gating unit handles inputs of differing dimensions
and outputs e ∈ Rd1 , which matches the dimension of ei,
defined as e = gate(ei, a).

III. METHODOLOGY

Figure 1 shows each attention head of our framework
KAAGE and multi-head attention mechanism is applied to our
experiments on partial datasets.

A. Knowledge Augmentation

To facilitate knowledge augmentation, we view each triple
tkij = (ei, rk, ej) ∈ T as a fundamental unit of knowledge and
enhance it by reversing its direction. Specifically, we transform
each triple (ei, rk, ej) into (ej , r

−1
k , ei), where R′ = {r−1|r ∈

R}, and define T ′ as set of inverse triples. We then propose the
augmented knowledge graph G′ = (E ,R′′, T ′′), where R′′ =
R′ ∪R and T ′′ = T ′ ∪ T .

B. Triple representation learning

We present a triple representation learning method to make
use of relations. For each triple tkij = (ei, rk, ej) ∈ T ′′, it can
be formulated as follows:

aijk = Wa · (hi + hj + gk) (5)

where hi, hj , gk ∈ Rd are the initial embeddings of entities
ei, ej and relation rk, respectively. Wa ∈ Rd×d is a linear
transformation matrix.

After that, in order to learn and quantify the importance of
triple tkij , we introduce an attention vector vatt as below:

bijk = LeakyReLU(vatt · aijk) (6)

where LeakyReLU is the non-linear activation function.

C. representation learning of entities

Subsequently, we compute the attention value using the
softmax function to derive the relative importance for entity
ei as follows:

αijk =
exp(bijk)∑

(rr,en)∈Ne(i)
exp(binr)

, (rk, rr ∈ R) (7)

where Ne(i) denotes the neighborhoods of ei in T . Similarly,
we can calculate βijk by replacing R and T with R′ and T ′

respectively.
Therefore, to update the representation of entity ei, we

further categorize and aggregate the representations of these
triples based on their unique relation types. The specific
definitions as follows:

h′i O = fe

(
WO

∑
(rk,ej)∈Ne(i)

αijkaijk

)
, rk ∈ R (8)

h′i I = fe

(
WI

∑
(rk,ej)∈Ne(i)

βijkaijk

)
, rk ∈ R′ (9)

where h′i O and h′i I represent the representations of entity ei
aggregated from the original and inverse relations, respectively.
fe denotes a non-linear activation function such as tanh.
WO, WI ∈ Rd′×d are the graph convolutional kernels. To
fuse the aggregated representations and incorporate residual
connection, we employ the gating unit mentioned above. This
is done as follows:

h′i = gate(We · hi, h′i O∥h′i I) (10)

where h′i indicates the final representation of entity ei. We ∈
Rd′×d is a linear transformation matrix.
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Fig. 1. Single attention head framework of our proposed model (KAAGE). ei, rk , ej , r−1
k are initial embeddings of entity i, relation k, entity j, inverse

relation k−1, respectively. ”softmax” represents the softmax function and v is an attention vector. ”gate” denotes the gating unit which fuses information and
h′
i, g

′
k are the final representations of entity i and relation k for each attention head.

Here, we adopt the multi-head attention mechanism, and the
ultimate representation can be concatenated in the following
formula:

hi =
M

||
m=1

h′im (11)

where M denotes the total number of attention heads and h′im
signifies the final representation of ei within the m-th attention
head.

D. Representation learning of relations

Similarly, for each relation rk ∈ R, we compute its relative
importance. The same process is followed for the inverse
relation r−1

k ∈ R′:

γijk =
exp(bijk)∑

(em,en)∈Nr(k)
exp(bmnk)

, (k ∈ R) (12)

where Nr(k) denotes the set of related head-tail entity pairs
of rk. Also δijk−1 can be obtained by replacing Nr(k) with
Nr(k−1).

Then we proceed to aggregate the representations of the
related triples based on these importance values:

g′kO
= fr

WR

∑
(ei,ej)∈Nr(k)

γijkaijk

 (13)

g′k−1 = fr

WR′

∑
(ei,ej)∈Nr(k−1)

δijk−1aijk−1

 (14)

where fr represents a non-linear activation function of rela-
tions such as tanh. WR and WR′ are the graph convolutional
kernels.

Analogous to the approaches used for entities, we integrate
a residual connection into the final representation and fuse it
with a gating unit to enhance the model’s performance:

g′k = gate(Wr · gk, g′kO
∥g′k−1) (15)

where Wr is a linear transformation matrix.
Ultimately, the combined representation of the relation rk

with M attention heads can be concatenated as described
below:

gk =
M

||
m=1

g′km
(16)

E. Training

Score function. In our model, we utilize ConvE as the
decoder to determine the plausibility scores for all potential
triples. Specifically, as detailed in Equation 1, the score for
the triple tkij can be calculated in the following formula:

φ(ei, rk, ej) = f(vec(f([hi; gk] ∗ w))W)hj (17)

Loss function. The challenge of link prediction in KG can
be framed as a binary classification task, where the goal is
to distinguish between the presence and absence of a link. To
achieve this, we adopt the binary cross-entropy loss function
to train our model effectively.

L = − 1

N

N∑
o=1

(
ytkio log(ŷtkio) + (1− ytkio)log(1− ŷtkio)

)
(18)

where N is the number of candidates of tail entities. ytkio ∈
{0, 1} represents the real label of triple tkio. Employing sigmoid
to the score, ŷtkio = sigmoid(φ(ei, rk, eo)) ∈ [0, 1] can be
obtained.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

In this study, we carefully selected three high-quality exper-
imental datasets including FB15K-237 [14], WN18RR [13],
Kinship [11] to thoroughly assess and validate the efficacy
and robustness of our proposed model. These three benchmark
datasets encompass a range of relation and entity counts, with
their fundamental statistical details neatly outlined in Table I.
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TABLE I
DATASET STATISTICS

Dataset Entities Relations Triples

Train Valid Test All

FB15k-237 14 541 237 272 115 17 535 20 466 310 116
WN18RR 40 943 11 86 835 3034 3134 93 003
Kinship 104 25 8544 1068 1074 10 686

TABLE II
PARTIAL HYPERPARAMETER SETTINGS FOR EACH DATASET

Dataset WN18RR FB15k-237 Kinship

Learning rate 1e-4 1e-4 1e-4
Epochs 800 1000 1000
Batch size 128 128 128
Embedding dimension 200 300 300
GCN dropout rate 0.5 0.6 0.4
Attention heads 1 3 3

B. Evaluation metrics

In this paper, we evaluate our model using the rankings
of triples. We assess performance of our model with simple
metrics such as Mean Reciprocal Rank (MRR), Mean Rank
(MR), and Hits@N, all based on how well the model ranks
the correct triples.

C. Baselines and experimental settings

Here, we introduce a few baseline models tailored for the
task of link prediction in KGs, to validate the effectiveness of
our proposed model. These baselines are outlined as follows:

• TransE [6]: A translational model that represents entities
and relations in vectors, minimizing the distance between
them through translations to model relations.

• DistMult [15]: A tensor factorization model using bilin-
ear scoring via matrix multiplication to represent entity-
relation intricacies.

• ComplEx [16]: Extends DistMult to complex numbers,
enabling capture of asymmetric and intricate relations
between entities and relations.

• ConvE [13]: A CNN-based model applying convolutional
operations to process relations and entities, inferring
missing links through neural networks.

• WGCN [17]: A GCN variant modeling relation differ-
ences with weighted graph convolutions and learnable
scalar weights for neighborhood messages.

• ComplexGCN [18]: Utilizes complex domain convolu-
tions in GCNs to capture knowledge representations of
entities and relations.

• MSHE [19]: a novel link prediction framework for knowl-
edge graph embedding, leveraging multi-source and hier-
archical neural networks to integrate complex knowledge.

• D-AEN [20]: A dual-attention embedding network for
KGE, fusing neighborhood info with bidirectional and
relation-specific attentions to propagate and update repre-
sentations.

Our model implementation relies on the open-source Py-
Torch platform, executed on an Ubuntu 18.04 server powered
by an Intel Xeon Silver 4210R CPU and an NVIDIA GeForce
RTX 3090 GPU. The hyperparameters tailored for each dataset
are detailed in Table II.

D. Results and discussions

Table III showcases the impressive link prediction capabil-
ities of our KAAGE model across three renowned benchmark
datasets. By benchmarking against various baseline models,
we confirm that KAAGE excels, particularly on the Kinship
dataset.

Specifically, by observing the performance of these models,
we can conclude that: Our model performs best on most
evaluation metrics of the three datasets. On the FB15k-237
dataset, ComplexGCN has the best Hits@1 and the second-best
MRR because ComplexGCN maps entities and relations to the
complex space, which has better representation capabilities for
the multi-type and general-domain knowledge graph dataset
such as FB15k-237. However, our KAAGE is still optimal
on the other three metrics. Similarly, D-AEN, which reverses
relations and triples, does not use a gating mechanism when
fusing heterogeneous information, but uses simple addition,
resulting in slightly inferior performance.

V. CONCLUSIONS

In this article, we introduce KAAGE, a novel GAT-based
approach for link prediction. KAAGE augment knowledge by
inversing relations and triples, leveraging attention mechanism
to fuse triple representations, capturing rich semantics. It
merges original and augmented knowledge via a gating unit,
balancing structural information. Extensive experiments on
three benchmarks reveal KAAGE’s superiority, especially on
Kinship.
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