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Abstract—Multichannel speech enhancement has gained signif-
icant attention for its capability of improving speech quality and
intelligibility in noisy environments. This paper presents a novel
approach to multichannel speech enhancement utilizing complex-
valued graph-in-graph convolutional networks (GiGCN) and
triple-path attentive recurrent networks (TPARN). The proposed
model leverages complex-valued operations to capture spatial
dependencies and decoupled LSTM blocks to model temporal
correlations. Meanwhile, the TPARN can effectively fuse the
frequency, time, and spatial features for the reconstruction of the
enhanced speech. Our experimental results based on the CHiME-
3 and L3DAS22 datasets show that the proposed integrated model
outperforms the state-of-the-art methods in terms of the PESQ,
STOI and WER performance metrics.

I. INTRODUCTION

Traditional approaches to multichannel speech enhancement
have often relied on beamforming techniques, which utilize
spatial filtering to enhance speech signals captured by multiple
microphones. Beamforming methods, such as minimum vari-
ance distortionless response (MVDR) [1][2] and generalized
sidelobe canceler (GSC) [3], have demonstrated their effective-
ness in many scenarios. However, these methods are limited
by their reliance on accurate spatial information and may not
fully exploit the temporal dynamics of speech signals.

With the advent of deep learning, there has been a significant
shift towards using neural networks for speech enhancement.
Convolutional neural networks (CNNs) and long short-term
Memory (LSTM) networks have been widely adopted to model
spatial and temporal dependencies in multichannel signals. For
instance, recent works have employed CNNs to capture local
spatial correlations [4] and LSTMs to model temporal depen-
dencies in sequential data [5][6]. However, these methods often
treat spatial and temporal features independently, potentially
missing complex dependencies across these domains.

Graph convolutional networks (GCNs) have emerged as
a powerful tool for modeling spatial relationships in vari-
ous applications, including multichannel speech enhancement.
GCNs effectively capture spatial dependencies across multiple
channels by representing the microphones and their spatial
relationships as a graph [7]. This approach allows for a more
comprehensive understanding of spatial information, which can
lead to more accurate enhancement of speech signals.

The use of complex-valued neural networks has shown great
promise in directly processing the complex spectra obtained
from short-time Fourier transform (STFT). Complex-valued
operations can handle the phase information present in the
STFT domain, which is crucial for accurate reconstruction of
enhanced speech signal [8]. Moreover, attention mechanisms
have been introduced to dynamically focus on important fea-
tures across the time and frequency domains. These mech-
anisms can significantly improve the performance of speech
enhancement models by selectively weighting those features
that contribute most to the enhancement task [9].

Several state-of-the-art methods have advanced multichannel
speech enhancement by combining various neural network
architectures. For example, the use of spatial autoencoders
to capture spatial dependencies while preserving the temporal
structure has shown significant improvements in speech quality
[10]. Additionally, decoupled spatial and temporal process-
ing frameworks have demonstrated the potential to reduce
computational complexity while maintaining high performance
[11]. Dense frequency-time attentive networks have further
enhanced the capability of speech enhancement models by
integrating detailed frequency and temporal features [12].

Despite these advancements, there remains a need for a
unified approach that can effectively leverage spatial, tem-
poral, and frequency information. In this paper, we propose
a novel method for multichannel speech enhancement that
integrates complex-valued graph in graph convolutional net-
works (GiGCN) with a triple-path attentive recurrent network
(TPARN). Our approach leverages the strengths of complex-
valued operations to capture spatial dependencies directly from
the STFT domain, while exploiting decoupled LSTM blocks
to model both short-term and long-term temporal correlations.
Moreover, a triple-path architecture is employed to extract the
frequency, time, and spatial features effectively, allowing for a
comprehensive feature fusion.

The proposed model is extensively evaluated on two bench-
mark datasets, i.e., CHiME-3 [13] and L3DAS22 [14]. Our
experimental results show that the proposed approach signifi-
cantly improves the quality and intelligibility of the enhanced
speech, as compared to the state-of-the-art methods in various
noisy environments. These findings corroborate the effec-
tiveness and robustness of our integrated model in handling



complex acoustic scenarios for real-world applications.

II. MODEL DESCRIPTION

A. Method Overview

Our proposed multichannel speech enhancement model
integrates the complex-valued graph in graph convolutional
networks (GiGCN) with a triple-path attentive recurrent net-
work (TPARN) to effectively capture the spatial, temporal,
and frequency information. The architecture of the proposed
integrated model is depicted in the upper half of Figure 1.
The input noisy speech signals from multiple channels are
first transformed into the frequency domain using the short-
time Fourier transform (STFT). These transformed signals are
then processed through a series of complex-valued GiGCN
layers to capture spatial dependencies, resulting in spatial
features denoted as Hspace. The enhanced features from the
GiGCN block are subsequently passed through decoupled
LSTM blocks, which separately model short-term and long-
term temporal dependencies, producing the temporal features
Htime. Finally, the TPARN integrates these spatial and tem-
poral features, along with frequency features Hfreq derived
from the input STFT, to form a cohesive representation. These
integrated features are then fused and used to reconstruct the
into enhanced speech signals.

B. Complex-Valued GiGCN Block

The complex-valued GiGCN block leverages the properties
of complex-valued neural networks for processing the STFT
coefficients, which are naturally represented in the complex do-
main. This allows for the direct manipulation of both amplitude
and phase information, crucial for accurately reconstructing
enhanced speech signals. Given a noisy speech signal captured
by N microphones, the input signal x(t) can be represented
as:

x(t) = [x1(t), x2(t), . . . , xN (t)] (1)

where xi(t) is the signal from the i-th microphone. Applying
the STFT to each channel, we obtain the complex-valued
spectrogram:

X(k, l) = [X1(k, l), X2(k, l), . . . , XN (k, l)] (2)

where Xi(k, l) represents the STFT of the i-th microphone
signal at frequency bin k and time frame l. The complex-valued
convolution operation is defined as:

(W ⋆X)(k, l) =

M∑
m=−M

N∑
n=−N

W(m,n)X(k−m, l−n) (3)

where W(m,n) is the complex-valued filter weight and
X(k, l) is the input complex spectrogram.

To capture spatial dependencies among microphones in a
multichannel setup, we model the system as a graph G =
(V, E), where nodes V represent microphones and edges E

represent the connections between them [15]. These connec-
tions are encoded in an adjacency matrix A, whose element
aij indicates the connection strength or similarity between
microphones i and j.

In this setup, the graph convolution operation updates the
feature vector Hi of each node by aggregating features from
its neighboring nodes j ∈ N (i). This update at layer l is
expressed as:

H
(l+1)
i = σ

 ∑
j∈N (i)

aijW
(l)
GCNH

(l)
j

 (4)

Here, H(l+1)
i represents the updated feature vector for node

i, W(l)
GCN is the layer-specific learnable weight matrix, and σ

is a non-linear activation function like ReLU.
GiGCNs extend this framework by introducing a nested

graph structure, where each primary node (microphone) is fur-
ther detailed as a secondary graph [16]. This nested structure is
particularly beneficial for complex-valued data, such as STFT
coefficients, where each coefficient has both real and imaginary
parts. The GiGCN operation, which captures more intricate
spatial relationships, is given by:

H
(l+1)
i,j = σ

 ∑
k∈N (i)

anested
ik W

(l)
GiGCNH

(l)
k,j

 (5)

where H
(l)
i,j represents the feature of the j-th component

(either real or imaginary) of the i-th node at layer l. The nested
adjacency matrix Anested and weight matrix W

(l)
GiGCN facilitate

the aggregation of features across the graph.
This dual-level graph structure allows the model to cap-

ture detailed spatial dependencies within and across nodes,
enhancing its ability to process and improve multichannel
audio signals. The nested structure ensures that both intra-node
and inter-node interactions are considered, providing a more
comprehensive understanding of the spatial relationships in the
data.

The complex STFT features are first decomposed into their
real and imaginary components. Each component undergoes
feature extraction using multi-scale GiGCN layers, which
employ filters of varying sizes (3x3, 5x5, and 7x7). This multi-
scale approach allows the capture of spatial features at different
resolutions.

For both the real and imaginary parts, the features derived
from the different filter sizes are concatenated, resulting in
enhanced real and imaginary feature sets. These sets are then
fused to produce a unified complex-valued feature represen-
tation, integrating information from both components. The
detailed operation of the complex-valued GiGCN block is
illustrated in the lower half of Figure 1.

This fused complex feature set effectively captures the
intricate spatial details present in the STFT domain and serves
as the input to the Decoupled LSTM blocks. These blocks are
designed to further refine the features by modeling short-term
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Fig. 1. Proposed multichannel speech enhancement framework

and long-term temporal dependencies, thereby enhancing the
model’s ability to improve speech quality in noisy environ-
ments.

C. Decoupled LSTM Blocks

The decoupled LSTM blocks are specifically designed to
separately model the short-term and long-term temporal cor-
relations in the enhanced features obtained from the complex-
valued GiGCN block. By decoupling the temporal modeling
into distinct short-term and long-term LSTM networks, we
can more precisely capture temporal dynamics across different
time scales, which is crucial for enhancing speech signals. The
input features Henhanced from the complex-valued GiGCN
block are processed through two separate networks: short-
term LSTM (ST-LSTM) and long-term LSTM (LT-LSTM).
The ST-LSTM focuses on capturing rapid temporal variations,
which are essential for preserving fine-grained temporal details
in the speech signal. Conversely, the LT-LSTM is designed
to capture slower, more sustained temporal dependencies,
which are important for maintaining the overall structure and
coherence of the speech signal over longer periods.

The outputs from the ST-LSTM and LT-LSTM networks are
concatenated to form the final temporal features Htemporal.
This comprehensive temporal representation ensures that the
enhanced speech signal retains both detailed and structural
temporal characteristics.

D. Triple-Path Attentive Recurrent Network (TPARN)

The TPARN [17] further combines the frequency, time,
and spatial features through a unified triple-path architecture.
The temporal features Htemporal, obtained from the decoupled
LSTM blocks, are combined with the spatial features Hspace

extracted from the GiGCN block and frequency features Hfreq

from the STFT domain. These three types of features are pro-
cessed in parallel paths within the TPARN: the frequency path
captures frequency-domain correlations, the time path handles

temporal correlations, and the spatial path processes spatial
correlations across different channels. These paths employ
convolutional, recurrent, and graph-based layers, respectively.
The outputs from these paths are integrated using a multi-
head attention mechanism (MHA), which combines the distinct
features into a unified representation. This combined output,
denoted as HTPARN , is formulated as:

HTPARN = MHA(Hfreq,Htime,Hspace) (6)

E. Channel Fusion

The channel fusion module combines the enhanced features
from multiple channels into a single, unified representation.
This process is essential for consolidating the spatial infor-
mation captured from different locations. The input to the
channel fusion module, HTPARN , is processed through a fully
connected layer:

Hfused = ReLU(WfusionHTPARN + bfusion) (7)

where Wfusion and bfusion are the weights and biases of
the fully connected layer, respectively. The final output is
transformed back to the time domain using ISTFT to obtain
the enhanced clean speech.

F. Loss Function

The model is trained using a combination of time-domain
and frequency-domain loss functions. The time-domain loss
is calculated as the mean squared error (MSE) between the
enhanced time-domain signal ŝ(t) and the ground truth clean
signal s(t):

Ltime =
1

T

T∑
t=1

(̂s(t)− s(t))2 (8)
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The frequency-domain loss is calculated as the MSE between
the STFTs of the enhanced and ground truth signals:

Lfreq =
1

KL

K∑
k=1

L∑
l=1

|Ŝ(k, l)− S(k, l)|2 (9)

The combined loss function is a weighted sum of the time-
domain and frequency-domain losses:

L = αLtime + βLfreq (10)

where α and β are the weighting coefficients that balance the
contributions of the two losses. In our experiments, we set
α = 0.5 and β = 0.5 to equally weigh the contributions of
both losses.

The above-proposed comprehensive approach leverages the
strengths of each component to enhance speech signals effec-
tively and its detailed architecture is shown in the lower portion
of Figure 1.

III. EXPERIMENTS

A. Datasets

To evaluate the performance of our proposed multichannel
speech enhancement model, called integrated model below
for comparison, we utilized two widely recognized datasets:
L3DAS22 and CHiME-3. The L3DAS22 dataset, designed for
3D speech enhancement tasks, includes over 40,000 virtual 3D
audio environments recorded using a 1st order Ambisonics
microphone, providing four-channel recordings [14]. Clean
utterances are sourced from the Librispeech [18] corpus, and
noise signals are from the FSD50K dataset [19]. The CHiME-
3 dataset comprises noisy recordings from six channels in
real-world environments, including buses, cafes, pedestrian
areas, and street junctions [13], making it suitable for ro-
bust automatic speech recognition and multichannel speech
enhancement tasks.

B. Experimental Setup

The noisy speech signals are transformed into the frequency
domain using the STFT, with a window size of 1024 samples,
a hop size of 512 samples, and an FFT size of 1024 points.
The resulting complex spectrograms are processed by our
integrated model, comprising complex-valued GiGCN, decou-
pled LSTM blocks, TPARN, and channel fusion modules. The
model is trained using the Adam optimizer with a learning
rate of 10−4 and a batch size of 16 for 100 epochs. Data aug-
mentation involves adding various types of noise at different
SNRs, ranging from 0 dB to 20 dB, ensuring robustness across
a wide range of noisy conditions. The model is evaluated on
separate test sets of unseen noisy speech recordings to ensure
a fair performance assessment.

C. Experimental Results and Analysis

The evaluation metrics used in this study include perceptual
evaluation of speech quality (PESQ), short-time objective
intelligibility (STOI) [26], and Word Error Rate (WER). We
have also used an overall metric to evaluate our model based

on dataset L3DAS22, which is a combination of STOI and
WER [14]:

Metric =
STOI + (1− WER)

2
(11)

The WER is computed based on the transcription of the
estimated target signal and that of the reference signal, both
decoded by a pre-trained Wav2Vec2.0-based ASR model [27].

The experimental results on the CHIME-3 dataset demon-
strate that our integrated model yields a superior performance
compared to other models, with higher average PESQ and
STOI scores across all scenarios (BUS, CAF, PED, STR), as
shown in Table I. Our model achieves an average PESQ of
1.905 and STOI of 0.922, outperforming other state-of-the-
art methods. The ablation studies show that each component
of our model contributes to the overall performance, with the
integrated model achieving the highest scores.

Based on the L3DAS22 dataset (Table II), our proposed
model significantly outperforms other state-of-the-art models.
Our integrated model achieves the highest STOI score of 0.941
and the lowest WER of 0.065, resulting in a superior overall
metric of 0.938. The ablation studies show that each com-
ponent of our model contributes to the overall performance.
Specifically, using a single 3x3 or 5x5 GiGCN block slightly
decreases performance, indicating the importance of the multi-
scale approach. The removal of either short-term or long-
term LSTM also leads to lower performance, highlighting the
necessity of capturing both short-term and long-term depen-
dencies. The simplified channel fusion method results in lower
STOI and higher WER, demonstrating the effectiveness of our
sophisticated fusion technique.

Overall, our proposed model demonstrates significant im-
provements in PESQ, STOI, and WER metrics over state-of-
the-art methods on both datasets. The comprehensive ablation
studies further validate the effectiveness of our design choices,
highlighting the importance of each component in achieving
superior speech enhancement performance.

IV. CONCLUSIONS

In this work, we have presented a novel multichannel speech
enhancement model integrating complex-valued GiGCNs, de-
coupled LSTM blocks, TPARN, and channel fusion. Our
simulations based on L3DAS22 and CHiME-3 datasets demon-
strated significant improvements over state-of-the-art methods
in terms of PESQ and STOI metrics. Our ablation studies val-
idated the contributions of each component, underscoring the
importance of multi-scale approaches, temporal modeling, and
feature integration. It is also shown that the proposed approach
has a robust performance across various noisy environments,
indicating a strong potential for practical applications in real-
world scenarios.
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