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Abstract—More than half of Japanese people with hearing
impairments communicate using speech, however speech recog-
nition systems trained using speech from individuals with normal
hearing are unable to achieve sufficient recognition accuracy of
speech from individuals with hearing impairments. Therefore,
speech recognition systems adapted for individuals with hearing
impairments are needed. In this study, we propose a learning
method that retains both acoustic and linguistic information
to achieve more accurate recognition of speech of the hearing-
impaired. Our proposed method performs domain adaptation by
alternately switching whether to train the Transformer encoder
layer and decoder based on the input speech. By using this
method, we can create a speech recognizer adapted to hearing-
impaired speech acoustically, while preserving the linguistic
information of a general training corpus, thereby improving
recognition performance for hearing-impaired speech.

I. INTRODUCTION

In recent years, the accuracy of automatic speech recog-
nition (ASR) has improved, and it is now being utilized in
various scenarios, such as smart speakers, voice assistants, and
voice input. The ASR systems used in these applications are
generally trained with the speech of hearing individuals, and
can achieve high recognition accuracy for standard speech.
However, it has been reported that such models have low
recognition accuracy for the speech of hearing-impaired indi-
viduals [1]. Approximately 25% of hearing-impaired individu-
als are said to use sign language as a means of communication
in their daily lives [2], but smooth communication through sign
language requires both parties to understand it. Additionally,
it has been reported that more than half of hearing-impaired
individuals use speech to communicate, but their speech tends
to be difficult to understand, thus the use of high-accuracy ASR
would be very helpful. However, existing speech recognizers
are unable to achieve sufficient recognition performance.

One obstacle to achieving sufficient recognition accuracy of
the speech of the hearing-impaired is the lack of a corpus of
their speech data. Another is the fact that their speech has
different acoustic characteristics than that of hearing individ-
uals, in terms of articulation, prosody, and phonation, which
are factors that reduce speech recognition accuracy. Research
has been conducted on speech recognition of the speech of in-

dividuals with articulation disorders, which has characteristics
similar to the speech of hearing-impaired individuals [3], [4].
To overcome the problem of a lack of speech data for individu-
als with articulation disorders, methods have been proposed to
adapt standard speech recognition models to recognize such
speech [5], [6]. Furthermore, methods using self-supervised
models pre-trained with a large amount of unlabeled data
have also been proposed [7]. Self-supervised learning (SSL)
has achieved high accuracy in various tasks such as speech
recognition [8], [9], speech emotion recognition [10], and
speaker identification [11]. Moreover, it has been reported
that speech representations generated using SSL-based speech
recognition models are robust to domain mismatches [7], [12],
[13]. Pasad et al. [14] have shown that the layer-wise repre-
sentations of wav2vec 2.0 [8], a framework that learns speech
representations from audio only, follow an acoustic-linguistic
hierarchy. They have also shown that the weights of the upper
layers of a pre-trained wav2vec 2.0 framework are not suitable
for ASR fine-tuning and ASR fine-tuning using wav2vec 2.0
can be improved by initializing the weights of the upper layers.
It has also been reported that speech features captured by
wav2vec 2.0 representation, particularly the speech features
of XLSR-53 [15], are effective for improving recognition
of the speech of individuals with articulation disorders [7].
However, the methods proposed in these studies are mostly
for acoustic domain adaptation, and linguistic information also
needs to be considered to achieve high speech recognition
accuracy. John et al. [16] proposed constructing an ASR
model which can recognize out-of-vocabulary words in the
speech of individuals with articulation disorders by converting
normal speech containing unknown words into the speech of
individuals with articulation disorders, and using the converted
speech as training data. However, this method relies on the
accuracy of the voice conversion used for acoustic domain
adaptation.

Therefore, in this study we aim to construct an ASR that
retains acoustic speech representations obtained through SSL,
in addition to the linguistic information obtained from a
general, large-scale speech corpus. Motivated by our previous
research [17], which is currently under review, we first consid-
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Fig. 1. Proposed alternating learning of acoustic and linguistic information.

ered replacing the encoder layers, but observed overfitting after
fine-tuning the ASR with a small amount of data after layer
replacement. To further improve the accuracy of recognition
of speech from hearing-impaired individuals, we propose a
learning method that suppresses overfitting while retaining
the linguistic information obtained from a general, large-scale
training corpus, and which also adapts the model to hearing-
impaired speech using the available target domain speech. This
process of acoustic and linguistic adaptation are repeatedly
performed during model training. The contributions of this
paper are as follows:

• We demonstrate that the proposed method constructs
a speech recognition model that retains both acoustic
information from hearing-impaired speech and linguistic
information from of standard speech.

• We show that a model trained using the proposed method
outperforms the same model fine-tuned in a conventional
manner, as well as other models with a larger number of
parameters, in terms of recognition accuracy for hearing-
impaired speech.

II. PROPOSED METHOD

Our previous work [17], which is currently under review,
proposed a method of replacing the encoder layers of an
ASR model in order to adapt it to the processing hearing-
impaired speech, using the acoustic information of speech
from hearing-impaired individuals while retaining the linguis-
tic information obtained from a general, large-scale speech
corpus. In this method, fine-tuning the model with the speech
of hearing-impaired individuals after replacing the encoder
layers. However, we observed that fine-tuning with a small
amount of speech data from hearing-impaired individuals
caused overfitting of the linguistic information. To prevent
this overfitting, in this paper we propose a learning method
that alternately learns the acoustic information of hearing-
impaired speech and the linguistic information of a general,
large-scale speech corpus, after replacing the encoder layers.
This method is inspired by the observation that the lower
layers in the Transformer encoder of the ASR model process

acoustic information while the upper layers process linguistic
information. The proposed method uses as its initial state the
model with replaced encoder layers described in our previous
study, currently under review [17], as described in Section II-B.

A. Alternating learning

A diagram of the proposed method is shown in Fig. 1. In
the proposed method, Connectionist Temporal Classification
(CTC) [18] fine-tuning is performed as follows:

1) When using the speech of hearing individuals as the tar-
get language domain, the lower layers of the Transformer
encoder are frozen, and only the upper layers close to
the output layer, and the decoder, are trained.

2) When using the speech of hearing-impaired individuals
as the target acoustic domain, the upper layers of the
Transformer encoder are frozen, and only the lower
layers close to the input layer are trained.

3) Repeat steps 1) and 2).
Using this training method, the ASR can be domain-adapted
to both the target language domain and the target acoustic
domain.

B. Initialization of ASR model

We initialize the ASR model using the following procedure
prior to the alternating learning, described in Section II-A.
The model is initialized using the method shown in Fig. 2.
This approach is based on a method proposed in our previous
paper [17], which is currently under review, involving the
following three steps:

1) Additional pretraining: We further pre-train an XLS-R
model to adapt it to the the acoustic information of speech from
hearing impaired individuals, using both large scale, standard
Japanese speech data, and the speech data of hearing-impaired
individuals, both of which will also be used during subsequent
fine-tuning.

2) 1st fine-tuning: To learn linguistic information, we per-
form the first fine-tuning of the speech recognition model using
a large amount of speech data from hearing individuals the
target linguistic domain. We also add a single, fully-connected
layer as the decoder and freeze the CNN encoder.

3) Replace layers: Assuming that the effect of acoustic
domain adaptation from the additional pre-training has been
forgotten due to the first fine-tuning, we construct a speech
recognition model that retains both acoustic and linguistic
information by replacing part of the encoder layers of the fine-
tuned speech recognition model with the pre-trained XLS-R
model’s encoder layers. In this study, the initial state was set
by replacing the lower half of the Transformer encoder layers.

III. EXPERIMENTAL SETUP

A. Hearing-impaired speech corpus

The corpus of speech from hearing-impaired individuals
which was used in this study was recorded by Kobayashi
et al. [1], and also includes additional speech data recorded
subsequently by the same researchers. This corpus includes
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Fig. 2. Initialization of the ASR model before alternating learning. This process includes additional pre-training using SSL and Transformer, fine-tuning of the
ASR model by combining the encoder and CTC decoder, and replacing some of the encoder layers.
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Fig. 3. Division at a splitting of DEAF corpus data into training, validation
and testing sets, based on recognition results for each hearing-impaired speaker
when using in an ASR model trained with standard on hearing individuals’
speech.

parts of the ATR phoneme-balanced 503 sentences used for the
JNAS read speech corpus [19], as read by hearing-impaired
individuals. Not all of the speakers read all of the selected
ATR sentences, however all of the speakers read both the
B and C sets of sentences. Figure 3 shows the Character
Error Rate (CER) for the speech recognition of each hearing-
impaired participant, sorted in ascending order, when using
an ASR model trained only using speech from non-impaired
individuals. Based on these results, the corpus of hearing-
impaired speech was proportionally divided according to the
recognition difficulty of the data, into training, validation
and test sets. During this division, care was taken to ensure
there was no overlap between the speakers and the utterance
content, and differences between the hearing-impaired speech
and speech from hearing individuals were considered. In Fig. 3,
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Fig. 4. Order of the training datasets during one epoch of alternating learn-
ing, where 1, 2, 3, 4, . . . , N represent the iterations, “Control” and “DEAF”
indicate data sampled from the corpus of standard Japanese speech and the
corpus of hearing-impaired speech, respectively.

the colors of the bars represent which of the datasets (training,
validation or testing) a speaker’s speech was assigned to. The
validation set consists of the ATR 503 B set, the test set
consists of the ATR 503 C set, and the training set consists of
the remaining sets. The training set comprises approximately
16 hours of speech from 16 individuals (6 females and 10
males), while the validation and evaluation sets each comprise
approximately 30 minutes of speech from 3 females and 3
males. In this study, we refer to this corpus as the DEAF
corpus.

B. Control speech corpus

We used speech from the JNAS corpus of read Japanese
as our corpus of standard speech of hearing individuals
because the DEAF corpus also consists of readings of the
ATR phoneme-balanced 503 sentences included in the JNAS
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Fig. 5. The probability of learning for each layer of the Transformer encoder

corpus. Therefore, as for the DEAF corpus, the validation
set for the corpus of hearing individuals’ speech consisted
of the ATR 503 B set, the test set consisted of the ATR
503 C set, and the training set consisted of the remaining
speech. As a result, the training set comprised approximately
80 hours of speech, the validation set approximately 2 hours,
and the evaluation set approximately 3 hours. In addition,
the large-scale, Japanese-language, Laboro TV Speech (LTV)
corpus [20], which includes approximately 2,000 hours of
general television speech, and 767 hours of news and report
reading speech, was added to the standard/hearing speaker
training set.

C. ASR Model

The XLS-R (0.3B) [21] model, which is based on SSL and
includes a Transformer encoder with 24 layers, was used in this
study as the ASR encoder. The XLS-R model is often used for
downstream tasks after fine-tuning, including speech recogni-
tion. Performing SSL using on large-scale speech data allows
high speech recognition accuracy, even when the amount of
labeled data available for fine-tuning is limited. It has been
reported that high recognition accuracy can also be achieved
for dysarthric speech, a type of disordered speech, through the
use of SSL representations [7]. During fine-tuning, a single
full-connected layer was added as the decoder, and training
was performed using CTC loss [18].

We set the baseline for ASR performance as the case
where fine-tuning is performed on the DEAF corpus after
initialization by layer replacement [17]. ASR accuracy when
using Whisper Medium [22], which has approximately twice
the parameters of XLS-R (0.3B), and ReazonSpeech v2.0
[23] were used for comparison. Whisper Medium is a model
that, like XLS-R (0.3B), has a 24-layer Transformer encoder.
ReazonSpeech v2.0 is an ASR model trained with a large-
scale, Japanese speech dataset that achieves high recognition
accuracy for standard speech. Each model was acoustically
domain-adapted by fine-tuning only the encoder, using the
DEAF corpus.

D. Preparation of the dataset

Our proposed method uses speech from both hearing-
impaired and unimpaired individuals, alternately, during model
training, which requires equalizing the number of utterances
from each corpus which are input during each epoch. However,
the DEAF corpus has significantly fewer utterances than the

Control corpus. To remove this bias, we first aligned the
number of utterances in the DEAF and Control corpora during
each epoch by copying the DEAF corpus. Next, we established
a data sampling method to alternately input utterances from
the Control corpus and the DEAF corpus into the model. The
training dataset created from the Control and DEAF corpora is
shown in Fig. 4. In each data batch, audio and its corresponding
transcription text are sampled from the same corpus, and in
the following batch, the same types of data is sampled from
the other corpus. In other words, during each iteration data
is sampled from the same corpus and input into the model
(from either the DEAF or Control corpus), thereby performing
alternating training of the model, i.e., the model is trained
through alternative learning.

Algorithm 1 Learning Decision Based on Uniform Random
Sampling and Threshold

1: Sample p ∼ U(0, 1)
2: if p ≤ threshold then
3: Train : Unfreeze layer
4: else
5: Skip : Freeze layer
6: end if

E. Training Strategy

In the Transformer encoder used for ASR, it is assumed
that the lower layers process acoustic information, while the
upper layers process linguistic information. Some evidences
of this has been suggested in studies such as [14], but it is
still unclear exactly how each layer processes information.
Therefore, in this experiment, we designed three learning
strategies and compared the resulting recognition accuracies
of the three ASR models. Each of these learning strategies are
illustrated in Fig. 5. These learning strategies determine the
learning probability, for each layer of the Transformer encoder,
for both the Control and DEAF corpora. By comparing this
learning probability to a threshold, Algorithm 1 determines
probabilistically whether or not to train each layer of the
Transformer encoder. The three learning strategies can be
described as follow:

• Strategy A: Bisectional Learning
We hypothesized that the lower layers of the Transformer
encoder process acoustic information, while the upper



TABLE I
ASR ACCURACY WHEN USING EACH ENCODER TRAINING STRATEGY

Strategy JNAS CER (%) DEAF CER (%)

A 8.3 22.9
B 7.9 21.7
C 7.7 21.3

layers process linguistic information, and divided the
layers to be trained with each speech corpus accordingly.
When the input is DEAF speech, the upper layers of
the Transformer encoder are frozen, and when the input
is Control speech, the lower layers are frozen. In other
words, the lower 12 layers of the Transformer encoder are
trained with the DEAF corpus, and the upper 12 layers
are trained with the Control corpus.

• Strategy B: Intermediate Layer Collaborative Learn-
ing
This is a modification of Strategy A, in which the
intermediate layers of the Transformer are trained with
both corpora. This is done because it is unclear whether
the intermediate layers of the Transformer encoder pro-
cess acoustic or linguistic information, and by modifying
Strategy A, we can add a margin to the layers trained
with each corpus. In other words, the lower layers of the
Transformer encoder are trained with the DEAF corpus,
the intermediate layers are trained with both the Control
and DEAF corpora, and the upper layers are trained with
the Control corpus.

• Strategy C: Probabilistic Collaborative Learning
This is a modification of Strategy A where the intermedi-
ate layers are trained probabilistically. In Strategy B, we
hypothesized that among the intermediate layers trained
using both corpora, the closer a layer is to the input layer,
the more likely it processes acoustic information, and the
closer it is to the output layer, the more likely it processes
linguistic information. Therefore, in Strategy C we chose
to select which intermediate layers were to be trained
with each corpus probabilistically, as an alternative to
Strategy B.

IV. EXPERIMENTAL RESULTS

A. Comparison of CER among training strategies

Table II shows CER with the three training strategies.
Among the three Encoder training strategies, Strategy C
achieved the highest recognition accuracy for both JNAS
(unimpaired) and DEAF (impaired) speech. This indicates
that Strategy C allowed the ASR model to learn the acoustic
information from the DEAF corpus and the linguistic infor-
mation from the control speech corpus more effectively than
the other strategies, therefore this training strategy was used
in our proposed method. Additionally, the use of Strategy B
resulted in higher recognition accuracy than Strategy A for
both JNAS and DEAF speech. These results suggest that

having the Encoder layers trained with both corpora leads to
better learning outcomes.

B. Comparison with other models
A comparison of speech recognition accuracy in terms

of CER for both unimpaired and hearing-impaired speech,
between the model trained using the proposed method, the
same model trained using other methods, and other models
with more parameters, is shown in Table II. The model trained
using the proposed method achieved the lowest CERs for
speech from either the JNAS or the DEAF corpora, compared
to the same model trained with other methods and with
the other models. Note however that the CER for JNAS
speech for the XLS-R model trained with the JNAS and LTV
datasets was 7.7%, which is the same as the model trained
using the proposed method. This suggests that the proposed
method was able to acquire the acoustic information of the
DEAF corpus while suppressing forgetting of the linguistic
information from the JNAS and LTV corpora during acoustic
training. These results demonstrate that a speech recognition
model constructed using the proposed method can retain both
specialized acoustic information as well as standard linguistic
information.

V. CONCLUSIONS

In this study, we proposed an alternating training method
for ASR models that retains linguistic information obtained
from a general, large-scale speech corpus while also being
adapting to recognize the acoustic information of hearing-
impaired speech, allowing accurate speech recognition of ei-
ther type of speech. Our experimental evaluation confirmed
that our proposed method achieved higher or equivalent speech
recognition performance for standard Japanese speech, and
higher recognition performance for hearing-impaired speech,
than the other methods. Additionally, we tested three Encoder
layer training strategies to investigate their effects on speech
recognition accuracy, and found that training the intermediate
layers probabilistically, using data from one or the other of the
two corpora, resulted in the highest ASR accuracy.

In the future, we plan to optimize the layers to be trained,
to further improve recognition accuracy.
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