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Abstract—In recent years, speech emotion recognition (SER)
methods that use both acoustic features and text features de-
rived through automatic speech recognition (ASR) have become
mainstream. Furthermore, the crossmodal integration of acoustic
and text features using a crossmodal transformer encoder has
been proposed and succeeded in improving the SER accuracy.
However, these methods have a problem in that ASR errors
occur frequently, especially for speech that contains emotion,
which affects the SER accuracy. To solve this problem, a method
of correcting the self-attention weights based on the word-
level confidence measure (CM), which indicates the reliability
of ASR results, has been proposed. In this paper, we propose a
method that combines the crossmodal transformer encoder and
the attention weight correction with CM to further improve the
SER accuracy. The network of the proposed method includes
two different attention mechanisms: scaled dot-product atten-
tion and self-attention. In this paper, we applied the attention
weight correction to each attention mechanism and verified
their effectiveness. Results of experiments using the Interactive
Emotional Dyadic Motion Capture (IEMOCAP) dataset revealed
that the attention weight correction for self-attention can achieve
higher SER improvement and the SER accuracy of the proposed
methods is equal to or higher than that of state-of-the-art SER
methods.

I. INTRODUCTION

Emotion recognition is a key to realizing natural and smooth
human-to-human and human-to-machine communication. Pre-
viously, many studies of the recognition of emotions from vari-
ous modalities such as speech, facial expressions, gestures, and
brain waves were conducted[1] [2] [3]. In particular, speech is
a basic modality used on a daily basis and there are many
situations where only speech can be used. Therefore, there
are high expectations for speech emotion recognition (SER)
technology. This technology makes it possible, for example,
to provide responses that consider the client’s emotions in call
centers and responses that show empathy for users in speech
assistant applications.

In previous SER methods, emotions have been classified
using acoustic features based on frequency spectrograms such
as the Mel-frequency cepstrum coefficient (MFCC), which
is widely used in automatic speech recognition (ASR) and
speaker recognition [1]. In recent years, methods that apply
ASR to input speech to obtain the utterance text and classify
emotions using both acoustic features and text features have
become mainstream. Furthermore, the crossmodal integration
of acoustic and text features using a crossmodal transformer

encoder has been proposed and succeeded in improving the
SER accuracy [4].

However, these methods have a problem in that ASR errors
occur frequently, especially for speech that contains emotion,
which affects the SER accuracy. To solve this problem, Feng
et al. proposed a method of multi-task learning of ASR and
SER to make ASR robust to emotional speech [5]. However,
the computational and time costs are very high. On the other
hand, Santoso et al. regarded ASR errors to be emotional
cues and proposed a method of correcting the self-attention
weights based on the word-level confidence measure [6],
which indicates the reliability of ASR results, and showed its
effectiveness [7].

In this paper, we propose a method that combines the cross-
modal transformer encoder and the attention weight correction
to further improve the SER accuracy. The network of our
proposed method consists of a crossmodal transformer encoder
for the crossmodal integration of acoustic and text features,
a self-attention mechanism for emphasizing time frames im-
portant for classification, and a dense layer for classification.
It includes two different attention mechanisms: scaled dot-
product attention and self-attention. In this paper, we apply
the attention weight correction to each attention mechanism
and verify these effectiveness.

II. CONVENTIONAL SER METHODS

A. Method using crossmodal transformer encoder

A method using a crossmodal transformer encoder was pro-
posed to realize the crossmodal integration of acoustic features
and text features. A transformer encoder is the encoder part
of the transformer model [8]. It is composed of a multihead
attention layer, a feed forward layer, and residual connections
to these layers. Generally, the multihead attention layer of
the singlemodal transformer encoder uses the same modality
features for the query Q, the key K, and the value V. On the
other hand, that of the crossmodal transformer encoder uses
different modality features for K and V from Q. It has been
reported that the SER accuracy is improved by performing the
crossmodal integration of acoustic and text features instead of
extracting them independently [4].

Fig. 1 shows an example of an SER method using a
crossmodal transformer encoder. This is used as the base
method in this paper. Fig. 2 also shows an overview of
the crossmodal transformer encoder in the acoustic feature



Fig. 1. Overview of the base method.

Fig. 2. Overview of the crossmodal transformer encoder.

extractor. In this figure, for simplicity, singlehead attention
is used, but multihead attention is actually used. In the base
method, the acoustic features are fed to a bidirectional long
short-term memory (BLSTM) to extract the feature ek, which
is defined for each time frame index k as

ek = gk ⊕ hk, (1)

where gk, hk, and ⊕ represent the forward and backward
hidden states of the BLSTM and a concatenation operation,
respectively. The text features are also fed to a BLSTM in the
same manner as in the acoustic feature extraction to obtain f l

for the lth word. Then, e and f are fed to the crossmodal
transformer encoder, and e is transformed to Q and f is
transformed to K and V to apply the scaled dot-product
attention as follows.

Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V , (2)

where dk represents the dimension of Q. This results in the
crossmodal integration of acoustic and text features. We add e
to the output of the scaled dot-product attention and normalize
it to obtain x, which is fed into the feed forward network layer
defined as

FFN(x) = max(0,xW 1 + b1)W 2 + b2, (3)

where W 1, W 2, b1, and b2 are trainable parameters. We add x
to the output of the feed forward network layer and normalize

Fig. 3. Overview of the SER method with the attention weight correction.

it to obtain Oacoustic, which is then fed into the self-attention
mechanism to emphasize the important time frames.

αk = softmax(yktanh(Y OT
acoustic,k)), (4)

where αk is the attention weight for the kth time frame, and yk

and Y are trainable parameters. The weighted sum zacoustic

from the attention weight αk and Oacoustic is defined as

zacoustic =

T∑
k=1

αkOacoustic,k, (5)

We apply the same processing as in the acoustic feature
extraction to the text features to obtain ztext. Finally, these
two features are concatenated to obtain z and classified with a
fully connected network to obtain the emotion class. Although
it is superior in terms of the crossmodal integration of acoustic
and text features, this method is vulnerable to ASR errors.

B. Method using attention weight correction

Fig. 3 shows an overview of the SER method with attention
weight correction [7]. This method takes acoustic features such
as a frequency spectrogram and the ASR text as input, and uses
BLSTM to extract acoustic features and text features indepen-
dently as in Eq. (1). Then, a feature vector that emphasizes
important time frames (or words) is obtained using the self-
attention mechanism. This is similar to Eqs. (4) and (5). The
two features obtained in this manner are concatenated and fed
into the fully connected layer to obtain the emotion class.

The advantage of this method is the attention weight cor-
rection. When ASR errors occur, unexpected attention weights
may be added, which may lead to a decrease in SER accuracy.
To solve this problem, a method of correcting the attention
weights using a confidence measure (CM) output together with
the utterance text from ASR was introduced. The CM is an
indicator of the reliability of ASR results and is expressed as
a value from 0 to 1, and the closer this value is to 1, the
higher the reliability. Words with low reliability have a high
possibility of ASR errors and are therefore likely to include
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Fig. 4. Overview of the self-attention weight correction (proposed method
1).

Fig. 5. Overview of the scaled dot-product attention weight correction
(proposed method 2).

significant emotional features, so the attention weights of text
features are corrected to be small and those of acoustic features
are corrected to be large. The details of the attention weight
correction method will be described later.

III. PROPOSED METHOD

In this section, we describe the proposed method in detail.
The network of the proposed method is the same as that of
the base method using the crossmodal transformer encoder in
Fig. 1. The proposed method includes two different attention
mechanisms, scaled dot-product attention and self-attention,
but it is not clear how to apply attention weight correction to
which attention mechanism. Therefore, in this paper, we com-
pare the following two attention weight correction methods:

1) Self-attention weight correction (proposed method 1):
Fig. 4 shows an overview of this method. This method
is represented as

sk = LSTM(αk ⊕ ck), (6)

β1, ..., βT = softmax(s1, ..., sT ), (7)

where αk is the attention weight for the kth time frame,
ck is the corresponding CM, and βk is the corrected

attention weight. This is the same method as the attention
weight correction described in Sect. II.B.

2) Scaled dot-product attention weight correction (proposed
method 2): Fig. 5 shows an overview of this method.
It shows the network structure of the crossmodal trans-
former encoder in Fig. 1, and attention weight correction
is applied to the attention weight matrix. First, the confi-
dence matrix is obtained by calculating the cross product
of CM vectors of acoustic features and text features. The
corrected attention weight matrix is obtained as follows:

sk = Linear(αk ⊕ ck), (8)

β1, ...,βT = softmax(s1, ..., sT), (9)

where αk is the kth column of the attention weight
matrix, ck is the column of the confidence matrix, and
βk is the column of the corrected attention weight
matrix. This is a newly proposed method for scaled dot-
product attention.

The proposed method 1 performs crossmodal integration while
ignoring the presence of ASR errors, and then modifies the
attention weights in the final self-attention step. On the other
hand, the proposed method 2 performs crossmodal integration
while considering the presence of ASR errors. In the next
section, we compare the effectiveness of each method.

IV. EXPERIMENTS

In this section, we first verify the effectiveness of crossmodal
integration of acoustic features and text features. We then
compare the effectiveness of the proposed method 1 with that
of the proposed method 2, and compare their performance with
that of state-of-the-art methods.

A. Experimental setting

In this study, we used the Interactive Emotional Dyadic
Motion Capture (IEMOCAP) dataset [9], which is widely used
as one of the benchmarks in SER. This dataset consists of
English speech data of 1 to 19 seconds from 10 speakers,
5 males and 5 females, and each utterance is labeled with
an emotion class. In this paper, we use four emotion classes,
namely, happy, sad, neutral, and angry, following past studies,
whose numbers of data are 1689, 1084, 1708, and 1103,
respectively.

The acoustic features are 33-dimensional vectors consist-
ing of 20-dimensional MFCC, 12-dimensional constant Q-
transform (CQT), and 1-dimensional fundamental frequency
(F0). The text features are 768-dimensional word-embedding
vectors obtained by pretrained BERT [10]. The utterance text
is obtained using ASR pretrained with the LibriSpeech [11]
dataset and the Kaldi speech recognition toolkit [12].

In this experiment, we use the following two evaluation mea-
sures: unweighted accuracy (UA), which is the classification
accuracy for the entire test data, and weighted accuracy (WA),
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TABLE I
SER PERFORMANCE OF THE BASE METHOD AND THE PROPOSED

METHODS.

method crossmodal
integration UA (%) WA (%)

base method w/o 73.4 75.7
base method w 74.7 76.9
proposed method 1 w 75.4 77.5
proposed method 2 w 75.3 77.2

which considers the imbalance in the number of data among
emotion classes in the test data. UA and WA are defined as

UA =

∑N
i=1 tii∑N

i=1

∑N
j=1 tij

, (10)

WA =
1

N

N∑
i=1

tii∑N
j=1 tij

, (11)

where N is the number of emotion classes and tij is the
number of data for class i that was classified as class j. In
this experiment, we conducted fivefold cross validation and
each evaluation value was the average of 5 validations. We
used Adam [13] as the optimizer with a learning rate of 1.0e-
4 and a weight decay of 1.0e-9. The loss function used for
model training was the cross-entropy loss and the dropout and
the batch size were set to 0.4 and 40, respectively. The results
were taken from the best WA out of 100 epochs. Finally, the
number of layers in the crossmodal transformer encoder was
set to 3, and the number of heads in the multihead attention
layer was set to 8.

B. Results

Table I shows the experimental results for each method.
First, we confirm the effectiveness of crossmodal integration.
In the table, the base method without crossmodal integration
is the case where the same features are input to the Q, K, and
V of the base method, and corresponds to extracting acoustic
and text features independently. From the table, both the UA
and WA of the base method are higher than those of the
base method without crossmodal integration, confirming the
effectiveness of crossmodal integration.

Then, we verify the effectiveness of the two types of
attention weight correction. Compared with that of the base
method, the WA values of the proposed methods 1 and 2
improved by 0.6% and 0.3%, respectively. This shows that
the effect of ASR errors could be reduced by correcting the
attention weights, considering the CM. In addition, the WA
of the proposed method 1 is 0.3% higher than that of the
proposed method 2. This implies that correcting the self-
attention weight is more effective. One possible reason for
this is that the process of self-attention weight correction is
simpler and therefore easier to train.

Finally, Table II shows the UA and WA values of the
proposed and state-of-the-art SER methods. These methods use
acoustic and text features and parts of these methods adopt the
crossmodal integration. We can see that the WA values of the

TABLE II
SER PERFORMANCE OF THE STATE-OF-THE-ART AND PROPOSED

METHODS.

method crossmodal
integration UA (%) WA (%)

Feng et al. [5] w/o 69.7 68.1
Santoso et al. [7] w/o 76.8 76.6
Chu et al. [4] w 75.1 76.3
Zhang et al. [14] w 76.4 77.1
Priyasad et al. [15] w 76.8 77.3
Proposed method 1 w 75.4 77.5
Proposed method 2 w 75.3 77.2

proposed methods 1 and 2 are equal to or higher than those
of the state-of-the-art SER methods.

From the above, it was confirmed that the combination of
the crossmodal transformer encoder and the attention weight
correction successfully improves the SER performance.

V. CONCLUSIONS

In this paper, we proposed a method that combines the cross-
modal transformer encoder and the attention weight correction
to further improve the SER accuracy. Since the network of the
proposed method includes two different attention mechanisms,
scaled dot-product attention and self-attention, we applied the
attention weight correction to each of them and compared
their effectiveness. The experimental results showed that the
attention weight correction for self-attention can achieve higher
SER accuracy and that the SER accuracy of the proposed
methods is equal to or higher than that of state-of-the-art SER
methods.
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