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Abstract—In Computer-Assisted Pronunciation Training
(CAPT), accurate phonetic transcriptions are essential for
identifying mispronunciations in non-native speech corpora.
Publicly available corpora for Korean English L2 learners
often lack these transcriptions due to their limited size and
availability. To address the shortage of accurate phonetic
transcriptions, we propose a method that combines multiple
Self-Supervised Learning (SSL)-based phone recognition systems
with Recognizer Output Voting Error Reduction (ROVER).
We trained SSL-based phone recognizers (Data2vec, Hubert,
Wav2vec) on the Librispeech and CommonVoice datasets
and used them to decode the L2arctic corpus. By applying
ROVER, we achieved 85.5% accuracy in phone transcription
compared to manual tagging. Additionally, an error analysis of
140 beginner-level sentences from the Korean Spoken English
Corpus (NIA144) identified common pronunciation errors among
Korean English speakers.

I. INTRODUCTION

In recent years, interest in learning a second language
(L2) has significantly increased. This growing enthusiasm for
L2 acquisition is driven by its numerous benefits, including
improvements in career prospects, educational and academic
advancements, and the expansion of social opportunities. In
foreign language learning, correct pronunciation is essential as
it enhances communication, accurately conveys the speaker’s
intentions, and improves both listening skills and overall
comprehensibility with native speakers.

Computer-Assisted Pronunciation Training (CAPT) plays a
crucial role in second language (L2) acquisition. It provides
explicit and real-time feedback, which motivates learners to
practice pronunciation and supports self-directed learning. Ad-
ditionally, CAPT allows learners to repeatedly practice specific
mispronunciations at their own pace. Typically, a CAPT system
includes Mispronunciation Detection and Diagnosis (MDD)
and Pronunciation Scoring. MDD identifies and diagnoses
specific pronunciation errors, delivering explicit feedback to

learners. Pronunciation Scoring assesses the learner’s pronun-
ciation against native speaker benchmarks, offering quantita-
tive evaluations that guide improvement.

In MDD, identifying patterns of pronunciation errors is cru-
cial. This process provides personalized feedback to learners
and monitors their pronunciation progress, thereby ensuring
effective learning outcomes. The error patterns at the phone
level can vary based on the learner’s proficiency level and are
influenced by the specific interactions between the learner’s
first language (L1) and the target second language (L2).

Accurate pronunciation assessment depends on identify-
ing phone error patterns, yet comprehensive phoneme error
datasets are severely lacking. As shown in Table 1, the chal-
lenge of limited resources for phonetic annotation in non-native
English is evident. For instance, the TIMIT dataset, widely
used for native English, includes only 5,232 phone annotations.
Datasets for non-native English, such as L2Arctic [1] and
Speechocean762 [2], provide even fewer annotations, with just
3,619 and 5,000 phone annotations, respectively. Furthermore,
essential datasets for L2 Korean, like NIA144(Topic-Adaptive
English Speaking Assessment Data for Korean Speakers),
NIA037(English Speech Corpus of Korean Learners for Ed-
ucational Use), which are large-scale Korean English speech
corpora released by AIHub, a part of the National Information
Society Agency (NIA) in Korea, lack phonetic transcriptions
entirely. This scarcity of annotated data significantly impedes
the development of effective Mispronunciation Detection and
Diagnosis (MDD) systems

Manual phone transcription is challenging due to pronun-
ciation variations caused by stress, accent, and prosody, as
well as the complexity of different phone systems based on
the speaker’s L1 and L2 background. It requires extensive
linguistic knowledge and is often time-consuming and costly,
typically necessitating the expertise of phonetics profession-
als[3], [4]. These factors make accurate phone tagging difficult.



Dataset L1/L2 Hrs Sentences Phone Label
TIMIT L1 4 5,232 5,232

L2arctic L2 Various Countries 11.2 11,026 3,619
Speechocean762 L2 Mandarin 6 50,00 5,000
Commonvoice v6 L1 2,182 1,821,529 x

Librispeech L1 1,000 292,367 x
NIA012 L2 Korean 5,000 7,276,761 x

NIA037-SPK L2 Korean 1016.81 34,340 x
NIA144 L2 Korean 300 66,889 x

TABLE I
A COMPARISON OF BASIC STATISTICS, FOCUSING ON THE DISTINCTIONS

BETWEEN NONNATIVE AND NATIVE ENGLISH DATASETS; NIA012:
KOREAN CHILDREN’S ENGLISH SPEECH DATA(AIHUB), NIA037-SPK:

ENGLISH SPEAKING EVALUATION DATASET FOR KOREANS(AIHUB),
NIA144: TOPIC-BASED ENGLISH SPEAKING EVALUATION DATASET FOR

KOREANS(AIHUB)

A study indicates that the correlation for phoneme tagging
is 0.88[5]. In contrast, automatic phone transcription offers
several advantages. It is cost-effective, reducing the financial
burden of manual annotation. It ensures consistent annota-
tion across datasets, minimizing human error and variability.
Additionally, automatic transcription systems can adapt to
various L1-L2 combinations, making them versatile for dif-
ferent linguistic backgrounds. They also handle large corpora
efficiently, a task that is impractical with manual tagging due
to the time and labor involved. However, Automatic Phonetic
Transcription (APT) is still not perfect due to the complexity
and accuracy of ASR, human speech variability, limitations in
current technology, and the need for high precision in certain
applications. Given these challenges in automatic phonetic
transcription, our study proposes a methodology to address
these issues.

To tackle the challenges of automatic labeling, researchers
have developed various techniques. Most studies in this area
have focused on automatic tagging for speech recognition.
For example, [6] introduced the momentum pseudo-labeling
method, which integrates online and offline models. Online
models predict pseudo-labels guided by offline models, itera-
tively improving performance. Similarly, [7] applied pseudo-
labeling to 60 languages using multilingual concepts, fine-
tuning models with pseudo-labels across different languages.
To address noisy data in pseudo-labeling, [8] modified the
training objective to detect incorrect labels, reducing errors. In
pronunciation assessment, [9] proposed a zero-shot approach
using the Hubert model, incorporating a transformer encoder,
k-means clustering, and a scoring module to evaluate pro-
nunciation. While sentence-level automatic tagging has been
extensively studied, more thorough research is needed for
phone-level automatic transcription.

To address this challenge, we propose an efficient method
for automatically generating phonetic transcriptions for large
non-native English corpora. Our approach utilizes multiple
SSL-based phone recognizer systems in conjunction with the
Recognizer Output Voting Error Reduction (ROVER) tech-
nique. ROVER enhances transcription robustness by reducing
errors and improving accuracy. This approach enables the

analysis of phone-level error patterns in non-native speech
corpora.

The remainder of this paper describes our methods (Sec-
tion 2), outlines the experimental conditions (Section 3), and
discusses the results (Sections 4 and 5)

II. PROPOSED METHOD

A. Step1. Constructing the three types of SSL-based phone
recognizer

In initial phase, we trained phone recognizer to obtain
actual phone sequences. We assume that pronunciations by
native English speakers adhere to standard pronunciation.
Using available English corpora such as LibriSpeech and
CommonVoice, we use audio transcriptions. We then apply a
Grapheme-to-Phoneme (G2P) conversion to map written forms
(graphemes) to their phonetic representations. Specifically, we
train three type of SSL-based phone recognizers, including
Data2vec[10], Hubert[11], and Wav2vec 2.0[12].

B. Step2. Actual Phonetic Transcription via Recognizer Output
Voting Error Reduction (ROVER)

In the second phase, we derive the final phone sequence us-
ing Recognizer Output Voting Error Reduction (ROVER)[13].
ROVER combines outputs from multiple phone recognizers
to produce a composite result, reducing the overall error rate
compared to individual systems. In our experiment, ROVER
was applied to the outputs of three phone recognizers to obtain
high accuracy. The three phone recognizers used are Wav2vec-
xlsr53, Hubert-large, Data2vec-large.

Given phone sequences PHubert, PData2vec, PWav2vec
from three phone reocgnizer systems:

PHubert = [pHubert,1, pHubert,2, . . . , pHubert,T1 ]

PData2vec = [pData2vec,1, pData2vec,2, . . . , pData2vec,T1
]

PWav2vec = [pWav2vec,1, pWav2vec,2, . . . , pWav2vec,T1
]

In alignment, each phone sequence is aligned to group
matching phones at each time t. Algorithms such as dynamic
programming with a word transition network (WTN) are used
to perform this alignment.

Hubert = Align(P1, P2, . . . , Pn) → {A1, A2, . . . , AT }

Data2vec = Align(P1, P2, . . . , Pn) → {A1, A2, . . . , AT }

Wav2vec = Align(P1, P2, . . . , Pn) → {A1, A2, . . . , AT }

where At is the set of aligned phones at time t.
Subsequently, the voting module analyzes this data to gen-

erate the final transcription.
In Voting Process, at each time t the most frequent phone

in the alignment set At. is selected. The voting metric follows
the majority rule.
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Fig. 1. The procedure of our ROVER-based phonetic transcription methodology. In Steps 1 and 2, we detail our proposed method for generating actual phone
transcriptions. In Step 3, we analyze and present the pronunciation error patterns by comparing these actual phone transcriptions with the canonical transcription.

Wt = argmax
p∈At

n∑
i=1

δ(p, Pi[t])

where δ(p, Pi[t]) is a function that returns 1 if phone p
is present at time t in the output of recognizer Pi, and 0
otherwise.

Combining the outputs of the three phone recognizers at
each time t to generate the final phone sequence.

Output = {P1, P2, . . . , PT }

By combining the outputs of these modules, we unify
shared characteristics among three phone recognizers, leading
to a representation of phone annotations at each time t and
generating the final phone transcription sequence

C. Step3. Phone-level Error Pattern Analysis

We adapt our automatic phonetic transcription method for
phone-level error analysis. we use officially available Whisper-
based ASR systems to convert raw audio into text, focusing
on creating canonical phone sequences. Next, we apply a
grapheme-to-phone (G2P) model to convert the decoded text
into canonical phone sequences for comparing with the actual
phone sequences generated by our method. We compare two
sets of results in our analysis. By comparing the standard
sequences with those generated by our method, we can identify
error patterns. Our method assumes the availability of only
raw audio files from L2 English speakers, with no textual
information.

III. EXPERIMENTS

A. Data

To train the phone recognizer, we use native English corpora,
specifically CommonVoice[14] and LibriSpeech[15]. These
corpora are chosen for their diverse range of spoken English
styles, which enhances recognizer accuracy. The training set in-
cludes 1,951,560 utterances from CommonVoice and 562,480
utterances from LibriSpeech, totaling 2,514,042 utterances.
CommonVoice v13 provides 1,366 hours of speech, while
LibriSpeech offers 961 hours, amounting to a combined total
of 2,327 hours of read speech.

We convert the transcribed text into ARPA-style phone
representations using the Montreal Forced Aligner with the
English US ARPA v2.00 G2P models. We use 70 ARPA
phone types, which are categorized into two groups: one group
excludes stress markers (e.g., AA0, AA1, AA2 grouped as
AA), and the other group includes stress markers with two-
group (specifically, (AA0, AA1) into AA, and AA2).

B. SSL-Based Phone Recognizers

We use the fairseq toolkits to build SSL-based phone
recognizers: Data2vec[10], Hubert[11], and Wav2vec 2.0[12].
We apply the default training settings provided by fairseq. We
train three type of SSL based phone recognizers: Wav2vec-
xlsr53, Hubert-large, Data2vec-large. For decoding, we use
the flashlight toolkit to perform Viterbi decoding without a
language model.
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phoneme recognizer Validation set (PER) Testset (PER)
Data2vec-large 5.395 7.373
Hubert-large 6.968 9.915

Wav2vec xlsr-53 5.846 7.83

TABLE II
ASSESSING THE PERFORMANCE OF PHONE RECOGNIZER SYSTEM WITH

SSL (PER : PHONE ERROR RATE)

C. ROVER-based phone transcription

To use ROVER, segmental boundaries (time alignment) are
required. We obtain these boundaries by performing forced
alignment with the Wav2Vec acoustic model. We then use
the SCTK toolkit to integrate phone recognizers through the
ROVER method. we use three recognizers to obtain final phone
sequences in the ROVER system.

D. Evaluation

We verify the performance of Automatic Phonetic Transcrip-
tion. We compare the manual transcription of an existing pub-
licly available L2 Arctic dataset with our proposed automatic
transcription, calculating alignment accuracy.

E. Analyzing Error Patterns

The L2Arctic corpus [1] is a collection of nonnative En-
glish speech data designed for mispronunciation detection. It
includes recordings from 24 nonnative English speakers, with a
balanced gender distribution and 150 utterances per participant.
We use the L2Arctic dataset to assess the performance of our
phonetic transcription method by comparing the phone tran-
scriptions generated by our system with the manual annotations
for Korean speakers in the dataset.

To further investigate our methodology, we used the NIA144
dataset to analyze and compare phone-based error patterns
with our methodology. The NIA144 corpus includes 450
hours of recordings from L2 Korean speakers, categorized
into five proficiency levels. We selected 140 cases from the
lowest proficiency level (Level 1) to analyze the resulting error
patterns. If the error patterns identified by our method align
closely with common errors in Korean English, it indicates the
reliability of our method.

IV. RESULTS

A. Performance of an SSL-Based Phone Recognizer System
via phone error rate(PER)

In Table 2, Wav2vec-xlsr-53 and Data2vec-large exhibit
lower PER values for both the validation and test sets, in-
dicating more accurate phone recognition compared to other
models. Notably, Data2vec-large achieves the lowest valida-
tion PER (5.395), demonstrating good performance in self-
supervised learning on the English corpus.

ROVER(Recognizer Output Voting Error Reduction)
Data2vec-large 85.4%/85.2%
Hubert-large 85.0%/84.7%

Wav2vec-xlsr53 84.9%/84.6%
ROVER Accuracy 85.5%/85.3%

TABLE III
COMPARISON OF OUR METHOD AND L2 ARCTIC HUMAN ANNOTATION ON

KOREAN SPOKEN ENGLISH, BOTH WITH AND WITHOUT STRESS
MARKER(ACCURACY)

ROVER(D2vlarge+Hubert-large+W2vxlsr53)
Arabic 84.2%
Hindi 83.8%

Mandarin 81.0%
Spanish 80.3%

Vietnamese 78.1%
Korean 85.5%

TABLE IV
PERFORMING AN EXTENSIVE ANALYSIS OF ROVER(DATAVEC-LARGE +
HUBERT-LARGE + WAV2VEC-XLSR53) TO EVALUATE THE ALIGNMENT

ACCURACY OF OUR PHONETIC TRANSCRIPTION METHOD IN COMPARISON
TO THE MANUAL ANNOTATION IN L2ARCTIC, ENCOMPASSING MULTIPLE

COUNTRIES(ACCURACY)

B. Comparison of our method and L2 Arctic human annotation
on L2 English from various country, both with and without
stress

In Table 4, the model demonstrates the highest accuracy
(85.5%) for Korean, highlighting its effectiveness in recogniz-
ing phones for Korean English L2 learners. Arabic and Hindi
also show high accuracy, indicating strong performance with
the phonetics of these languages. Mandarin and Spanish follow
with slightly lower accuracy, likely due to their tonal nature
and unique phonological features. Vietnamese has the lowest
accuracy among the languages tested, suggesting challenges in
capturing its phonetic nuances.

C. Analyzing Error Patterns

As shown in Table 3, the results highlight the performance of
the ROVER models. The ROVER method achieves an accuracy
of 85.5% without stress markers and 85.3% with stress markers

In Table 5, comparing our phonetic transcription results with
the manual annotations from L2Arctic for L2 Korean reveals
variations in pronunciation, particularly with consonants. The
findings include changes such as converting the open ’AH’
sound to the fricative ’TH’, altering the sibilant ’S’ to its voiced
counterpart ’Z’, replacing ’D’ with the voiced dental fricative
’DH’, and interchanging the tense ’IY’ with the lax ’IH’

We adapt our transcription method to the NIA144 dataset.
We examined error patterns by analyzing 140 instances of
Korean spoken English in NIA144 using our phone labeling
method. In Table 6, we evaluate the efficacy of our system
by comparing the error patterns identified through our phone
annotation method with common consonant errors in non-
native English speech by L2 Korean learners. Our findings
align with the patterns documented in [5], including errors
such as (/z/, /s/), (/dh/, /d/), (/v/, /h/), and (/f/, /p/)
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REFERENCES REFERENCES

Substitutions Deletion Addition
1 ’AH’,’TH’ ’D’ ’D’
2 ’S’, ’Z’ ’DH’ ’T’
3 ’D’, ’DH’ ’IY’ ’R’
4 ’IY’, ’IH’ ’AH’ ’HH’
5 ’AO’, ’OW’ ’T’ ’AO’
6 ‘AE’, ’EH’ ’AX’ ’AH’
7 ’AE’, ’AH’ ’S’ ’K’
8 ’IY’, ’TH’ ’Y’ ’DH’
9 ’Z’, ’S’ ’IH’ ’TH’

10 ’UW’,’OW’ ’UW’ ’W’

TABLE V
EXAMINING THE PATTERNS OF ERRORS PRESENT IN OUR PHONETIC

TRANSCRIPTION WITH THE MANUAL ANNOTATIONS ON KOREAN SPOKEN
ENGLISH

Substitutions reference [3] Deletion Addition
1 ’F’, ’P’ /z/, /s/ ’T’ ’T’
2 ’Z’, ’S’ /dh/,/d/ ’N’ ’N’
3 ’L’, ’R’ /v/,/b/ ’D’ ’D’
4 ’D’, ’T’ /f/,/p/ ’S’ ’S’
5 ‘DH’, ’D’ ’L’ ’M’
6 ’S’, ’Z’ ’R’ ’L’
7 ’V’, ’B’ ’W’ ’R’
8 ’B’, ’P’ ’Z’ ’K’
9 ’G’, ’K’ ’K’ ’TH’

10 ’T’, ’D’ ’Y’ ’W’

TABLE VI
EXAMINING ERROR PATTERNS IN OUR PROPOSED PHONE ANNOTATION TO
ENGLISH NIA144 DATASETS SPOKEN BY KOREAN: A COMPREHENSIVE
INVESTIGATION OF 140 CASE; DATA2VEC-LARGE + HUBERT-LARGE +

WAV2VEC-XLSR53

V. DISCUSSION

Our research focuses on developing automated phonetic
transcription for non-native English speakers, particularly L2
Korean learners. While our system did not achieve high
accuracy, the experiments have provided valuable insights into
handling the issue of sparse phone annotations.

The accuracy of our phonetic transcription is reliable, es-
pecially when compared to previous research on non-native
L2 Korean speakers. Earlier studies show an 88% agreement
among human transcribers [5]. Despite a 3% margin of error,
our transcription accuracy of 85.5% demonstrates a strong
consensus and reliability in comparison with human transcriber
agreement

Analyzing error patterns in phonetic transcription using real,
unlabeled data from 140 cases in the NIA144 dataset reveals
similarities with the error patterns found in previous research
on Korean English learners [5]. These results suggest that our
method is effective for transcribing the speech of non-native
English speakers, especially Korean learners. Additionally, our
method shows promise for analyzing pronunciation errors in
other language pairs, particularly for minority languages where
manual phonetic transcription is challenging.

VI. CONCLUSION

In summary, we have addressed the challenges by com-
bining a self-supervised learning-based phone recognizer with

ROVER. Our experiments using the L2arctic corpus for Korean
learners achieved an 85.5% accuracy in phone recognition.
This consistent accuracy and the analysis of error patterns
on unlabeled corpora demonstrate our method’s effectiveness
for transcribing extensive non-native English speech. Future
work will focus on adapting our approach for different non-
native English corpora and conducting thorough error analyses
to better understand phonetic transcription challenges.
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