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Abstract—Automatic music transcription (AMT), aiming to
convert musical signals into musical notation, is one of the
important tasks in music information retrieval. Recently, previous
works have applied high-resolution labels, i.e., the continuous
onset and offset times of piano notes, as training targets, achieving
substantial improvements in transcription performance. However,
there still remain some issues to be addressed, e.g., the harmonics
of notes are sometimes recognized as false positive notes, and
the size of AMT model tends to be larger to improve the
transcription performance. To address these issues, we propose
an improved high-resolution piano transcription model to well
capture specific acoustic characteristics of music signals. First,
we employ the Constant-Q Transform as the input representation
to better adapt to musical signals. Moreover, we have designed
two architectures: the first is based on a convolutional recurrent
neural network (CRNN) with dilated convolution, and the second
is an encoder-decoder architecture that combines CRNN with a
non-autoregressive Transformer decoder. We conduct systematic
experiments for our models. Compared to the high-resolution
AMT system used as a baseline, our models effectively achieve
1) consistent improvement in note-level metrics, and 2) the
significant smaller model size, which shed lights on future work.

I. INTRODUCTION

Automatic music transcription (AMT) has gained consider-
able research interest in the fields of music signal processing
and music information retrieval (MIR) for several decades [1].
The object of AMT is to convert acoustic musical signals
into some form of musical notation [2], such as piano rolls,
sheet music, and Musical Instrument Digital Interface (MIDI),
to improve the time-consuming process of manual music
transcription. AMT has been applied in automatic annotation of
musical information [3], musical education through automatic
instrument tutoring [4], [5], and musicological analysis [6]. In
addition, a successful AMT system is also useful for the other
tasks in MIR, such as beat tracking [7], chord recognition [8],
and performance classification [9].

Piano transcription is a crucial task of AMT, which typically
transcribes piano recordings into a series of note events with
pitches, onset/offset timings, and velocities. This task is partic-
ularly challenging due to its inherent polyphonic nature, i.e.,
the multiple pitches are usually in the same frame, thereby
causing a complex interaction and overlap of harmonics. To
address this issue, previous methods, taking into account the

piano’s acoustic property that the note energy decays after
an onset, have mainly focused on adapting models to notes
with varying amplitude and harmonics. Inspired by image
classification tasks [10], convolutional neural network (CNN)-
based methods [11], [12] have been proposed to regress
harmonic structures as acoustic representations for audio. On
the other hand, recurrent neural network (RNN) methods, such
as long short-term memory (LSTM) [13] and gated recurrent
unit (GRU) [14], have been applied to capture the medium-
and long-range dependencies between notes. Recently, drawing
on advancements in speech recognition tasks, convolutional
recurrent neural network (CRNN), which combines a CNN
acoustic model with an RNN-based sequential model, has be-
come popular for polyphonic piano transcription. Particularly,
Kong et al. [15] proposed a high-resolution piano transcription
system by regressing precise onset and offset times of notes
at arbitrary time resolution, achieving effective performance in
piano transcription.

However, there are several limitations of the high-resolution
system [15]. First, the harmonics of notes are usually rec-
ognized as false positive notes. A potential reason is that
the frequency components are calculated with the short-time
Fourier transform (STFT), whereas the frequencies that have
been chosen to make up the music scale are geometrically
spaced, thus yielding components that do not map efficiently
to musical frequencies. The second limitation is excessive
time and resource consumption due to the large model size.
This motivates us to build lightweight architectures for getting
around resource constraints and achieve the higher accuracy
of transcription.

With this in mind, this work applies an alternative front-
end called the Constant-Q Transform (CQT) [16] instead of
the STFT to achieve better simulation of the frequencies in
music signals. Moreover, we have designed two architectures:
the first is based on a CRNN with dilated convolution to
well capture a harmonic structure of music signals on CQT
feature, and the second is an encoder-decoder architecture that
integrates CRNN with a non-autoregressive Transformer (NR-
Transformer) decoder. Compared to the high-resolution sys-
tem, we show that our systems effectively achieve consistent
improvement in note-level metrics. Specifically, the proposed



Fig. 1. The high-resolution model.

architectures use significantly fewer parameters of 2.7 million
and 0.9 million, respectively, while the high-resolution system
uses 20 million parameters. This demonstrates that our sys-
tems can achieve the ideal transcription performance without
excessive resource consumption.

II. RELATED WORK

Since the high-resolution system can be seen as the step
stone of our work, we here give a detail overview of the high-
resolution system in this section.

A. Onset and offset times detection

Onsets and offsets represent the beginning and ending of
a piano note event, carrying rich information about the piano
notes. [17] proposed a dual-objective system for onsets and
offsets that conditions the detection of onsets to predict frame-
wise outputs. For each piano note, [17] labeled only several
consecutive frames of an onset or offset as 1, while other
frames was labeled as 0, thereby limiting the transcription
resolution. When the precise onset or offset time shifts within
a frame, the information about these changes is lost after
quantization. Additionally, this labeling method cannot handle
cases where the precise onset or offset time is on the boundary
between two frames. In light of this, [15] proposed a new
labeling method to address the issue that transcription reso-
lutions are limited by the hop size between adjacent frames,
by predicting the continuous onset and offset times of piano
notes. A new training target was applied to represent the time
difference between the center of a frame and its nearest onset
or offset times of a note. The process of encoding the time
difference into the training targets can be formulated as{

g (∆i) = 1− |∆i|
J∆ , |i| ≤ J

g (∆i) = 0, |i| > J,
(1)

where ∆ and ∆i are the frame hop size time and the time
difference, respectively. i is the index of a frame, where
negative and positive i values indicate the previous and future
frame indexes of an onset or offset. J is a hyperparameter that
is used to control the sharpness of the targets, i.e., the smaller
the J , the sharper the targets g(∆i).

B. High-resolution piano transcription system

Fig. 1 shows the architecture of the high-resolution model
that we use as the baseline. The log-mel spectrogram with a
shape of T × F calculated from STFT spectrum is the input
feature, where T is the number of frames, and F is the number
of mel frequency bins. The frame, onset, offset, and velocity
tasks share the same acoustic module. This acoustic module,
consisting of a convolution block with several convolutional
layers and a bidirectional gated recurrent unit (biGRU) layer,
is able to extract spectral and temporal information from the
log-mel spectrogram. Then, a fully connected layer is applied
to output the results of the acoustic model with a shape
of T × K, where K is the number of pitch classes. The
prediction outputs of velocities are concatenated with outputs
of the onsets from the acoustic model. This concatenated data
is then fed into a biGRU layer to calculate the final onset
predictions. Similarly, the predicted onsets and offsets are used
as conditional information to predict frame-wise outputs in the
same way.

III. PROPOSED METHOD

At the core of our approach is the idea of effectively
simulating the frequencies of music signals to improve the
performance of the high-resolution system. We have designed
two architectures: the first is based on a CRNN with dilated
convolution (See Section III-A), while the second combines a
CRNN with a NR-Transformer decoder in an encoder-decoder
architecture (See Section III-B).

A. Improved CRNN Model for the High-Resolution System

Fig. 2(a) shows the overall architecture of our proposed
CRNN model for improved high-resolution system. The CQT
spectrogram is applied as input instead of the log-mel spectro-
gram. Onset, offset, frame and velocity tasks share the same
acoustic model that includes a dilated convolution block and a
biGRU layer. The output of the velocity serves as conditional
information for the onset, while the outputs of both onset and
offset condition the frame. We denote this model as HRplus.

1) Inputs and Outputs: To better simulate the frequencies
in music signals, we use CQT as the input representation.
Unlike the traditional Fourier transform or the STFT which
employ a linear frequency scale, the CQT utilizes a logarithmic
frequency scale that closely approximates musical frequencies.
As described in [18], the distance dk between the fundamental
frequency f0 and the k-th overtone is given by

dk = log21/Q (k · f0)− log21/Q (f0)

= Q · log2(k),
(2)

where Q is the constant factor of the filter banks that indicates
the number of frequency bins per octave.

The outputs of models consist of frame, onset, offset, and
velocity events, where onsets and offsets are represented as
continuous events, as described in Section II-A. Then, we post-
process note-wise events into a set that contains onset time,
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Fig. 2. Illustration of HRplus model architecture. Norm denotes instance normalization with a ReLu activation, d denotes the dilation rate.

Fig. 3. Illustration of HRplus-hybrid model architecture. FC denotes a fully
connected layer, σ denotes a sigmoid function.

offset time, and velocities, using the algorithm of the high-
resolution system. This post-process proceeds in the following
steps:
Step 1. Note onset detection. If the value of an onset event in
a frame exceeds the onset threshold, and this value is a local
maximum, this frame is detected to contain an onset. Then,
the precise onset time is calculated.
Step 2. Velocity scaling. MIDI files use integers between 0
and 127 to represent the velocity of notes. Since we normalize
the dynamic range of velocities from [0, 127] to [0, 1] during
model training, the predicted velocities are scaled back to the
[0, 127] range if an onset is detected in Step 1.
Step 3. Note offset detection. For the onset detected in Step 1,
an offset is detected if the offset prediction output exceeds the
offset threshold, or if any frame prediction outputs fall below
the frame threshold. Then, the precise offset time is calculated.
Additionally, when consecutive onsets of the same pitch are
detected, the previous onsets are truncated by adding offsets.

2) Acoustic Model for CQT Input Representation: Con-
sidering the challenge of capturing and analyzing multi-scale

frequency information scattered in the CQT, we use a dilated
convolution block and a biGRU layer as the acoustic model,
inspired by HPPNet-sp [19]. The detail of dilated convolution
block is shown in Fig. 2(b). The first three convolution layers,
each with a kernel size of 7 × 7 and equipped with instance
normalization and ReLU activation, extract local information
from the CQT input. Subsequently, eight dilated convolution
layers with kernel sizes of 1× 3 apply different dilation rates
of 48, 76, 96, 111, 124, 135, 144, and 152, respectively, to
capture the harmonic series. These dilation rates, calculated
by Eq. (2) with Q = 48, correspond to the intervals between
adjacent harmonics in a harmonic series, i.e., d2, d3, ..., d9 in
Eq. (2). The outputs of the eight dilated convolution layers are
combined and then fed into a dilated convolution layer with a
dilation rate of 48 and a kernel size of 1 × 3, equipped with
instance normalization and ReLU activation. Subsequently, a
max-pooling layer with a pooling size of 4 along the frequency
axis reduces the frequency bins to match the number of pitch
classes. Finally, a dilated convolution layer with a kernel size
of 1×3, a dilation rate of 12, instance normalization, and ReLU
activation is applied, followed by three convolution layers with
kernel sizes of 5× 1.

B. Hybrid CRNN-Transformer Encoder-Decoder Model

We have designed an encoder-decoder architecture integrat-
ing the acoustic model of HRplus with the NR-Transformer
decoder, as shown in Fig. 3. We denote this model as HRplus-
hybrid. The motivations for designing this encoder-decoder
architecture are derived from two main considerations: 1)
the acoustic model of HRplus could serve exclusively as the
encoder of HRplus-hybrid, so as to focus on extracting features
from the input and transforming them into a intermediate
high-dimensional representation; and 2) the strength of Trans-
former decoder in capturing long-term dependencies would be
leveraged, thanks to which these intermediate representations
could be effectively decoded to more accurate outputs even
if reducing the model size. The decoder employs the NR-
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Transformer decoder, which includes four decoder blocks
stacked in series. Each NR-Transformer decoder block includes
a self-attention module, a cross-attention module, and a feed-
forward module. The outputs of the encoder and a trainable
positional embedding are used to calculate the cross-attention.
Finally, a fully connected layer outputs the predictions for
onset, offset, frame, and velocity.

C. Loss functions

We use a similar loss calculation as the high-resolution
system for the proposed models, with the total loss Ltotal being
the sum of the losses for onset Lon, offset Loff , frame Lfr,
and velocity Lvel as

Ltotal = Lon + Loff + Lfr + Lvel. (3)

We denote the continuous target and prediction of onset and
offset as gon, ĝon, goff , and ĝoff , respectively, where they are
regarded as the probability of a binary variable (i.e., from 0
to 1), and the binarized target and prediction of frame as bfr
and b̂fr (i.e., 0 or 1 for the target and from 0 to 1 for the
prediction). The onset loss Lon, offset loss Loff , and frame
loss Lfr are represented as

Lon =

T∑
t=1

K∑
k=1

Lbce(gon(t, k), ĝon(t, k)), (4)

Loff =

T∑
t=1

K∑
k=1

Lbce(goff (t, k), ĝoff (t, k)), (5)

Lfr =

T∑
t=1

K∑
k=1

Lbce(bfr(t, k), b̂fr(t, k)). (6)

Lbce is a binary cross-entropy loss function defined as

Lbce(y, ŷ) = −y · log(ŷ)− (1− y) · log(1− ŷ), (7)

where y denotes target and ŷ denotes prediction. Since we
predict the velocity only where the onset is detected, the
velocity loss Lvel is represented as

Lvel =

T∑
t=1

K∑
k=1

bon(t, k) · Lbce(bvel(t, k), b̂vel(t, k)), (8)

where bvel and b̂vel are the binarized target and prediction of
velocity, bon ∈ {0, 1}T×K indicates the presence or absence
of note onsets.

IV. EXPERIMENTAL EVALUATIONS

A. Datasets

To evaluate the performance of our systems on the pi-
ano transcription task, we used the MIDI and Audio Edited
for Synchronous Tracks and Organization (MAESTRO) [20]
dataset, a large-scale piano dataset containing about 200 hours
of paired CD-quality audio recordings and MIDI files from ten
years of the International Piano-e-Competition. These audio
recordings and MIDI files are aligned with around 3 ms
accuracy and sliced into individual musical pieces, which are

annotated with composer, title, and year of performance. Virtu-
oso pianists performed on Yamaha Disklaviers, concert-quality
acoustic grand pianos, integrated with a high-precision MIDI
capture and playback system. To compare against the baselines,
we trained and evaluated on MAESTRO v2 and MAESTRO
v3 datasets, respectively. We used the train/validation/test split
following by the official configuration of MAESTRO dataset
without any extensions or augmentations. The total duration of
each split in hours are 161.3/19.4/20.5 in MAESTRO v2 and
159.2/19.4/20.0 in MAESTRO v3, respectively.

B. Experimental Setup

We used PyTorch [21] to implement our systems. The audio
recordings were split into 20-second pieces and resampled
to 16 kHz so that all the frequencies of the piano could be
covered. Then, we down-mixed the audio into a single channel
and converted it to a CQT using the nnAudio toolkit [22] with
a hop length of 320 points, 48 bins per octave, resulting in a
total of 352 frequency bins. For high-resolution label for onset
and offset, we set the hyperparameter J = 5, i.e., each onset
or offset affects the regression values of 2× J = 10 frames.

All the models we proposed were trained with the Adam
optimizer [23] with a batch size of 2 and a learning rate of 6×
10−4. We used the ReduceLROnPlateau scheduler in PyTorch
for learning rate scheduling, employing its default parameters.
The best models were determined by the performance on the
validation set. At inference, the velocity threshold was set to
0, while all other thresholds were set to 0.4. The outputs were
converted to MIDI events as described in Sections III-A1.

C. Baselines

Since the proposed models are optimized based on the
high-resolution system, and the acoustic model is inspired by
HPPNet-sp, we use both High-resolution [15] and HPPNet-
sp [19] as baselines. The results are shown in Table I and
Table II. High-resolution applies the high-resolution labels
for note onset and offset to construct the piano transcription
system. HPPNet-sp uses dilated convolution and frequency-
grouped LSTM to model the harmonic structure and pitch-
invariance over time in piano transcription.

D. Evaluation Metrics

For evaluation metrics of the piano transcription systems,
we used note-level metrics involving the standard precision,
recall, and F1 score. These metrics match each predicted note
with a ground truth note, considering onset times, pitches,
and optional offset times and velocities. We used the mir eval
library [24] for all metric calculations. Following the default
configuration of mir eval, we applied a 50 ms tolerance for
note onsets, a 20% offset ratio for note offsets, and a tolerance
of 0.1 for velocities.

E. Experimental Results

Table I shows the evaluation results for the MAESTRO v2.
For the MAESTRO v2 dataset, HRplus significantly outper-
forms High-resolution on all metrics. Besides, HRplus uses
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TABLE I
TRANSCRIPTION RESULTS EVALUATED ON THE MAESTRO V2 DATASET

(P: PRECISION, R: RECALL, BOLD: BEST SCORE)

Model Params
Onset Onset & Offset Onset, Offset & Velocity

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

High-resolution [15] 20M 98.17 95.35 96.72 83.68 81.32 82.47 82.10 79.80 80.92
HRplus 2.7M 98.96 95.81 97.34 86.05 83.36 84.67 84.21 81.59 82.86

TABLE II
TRANSCRIPTION RESULTS EVALUATED ON THE MAESTRO V3 DATASET

(P: PRECISION, R: RECALL, BOLD: BEST SCORE, UNDERLINE: SECOND BEST SCORE)

Model Params
Onset Onset & Offset Onset, Offset & Velocity

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

High-resolution [reproduced] 20M 98.22 95.26 96.69 83.33 80.86 82.06 81.68 79.28 80.44
HPPNet-sp [19] 1.2M 98.45 95.95 97.18 84.88 82.76 83.80 83.29 81.24 82.24

HRplus 2.7M 99.01 95.86 97.39 86.14 83.46 84.76 84.31 81.69 82.96
HRplus-hybrid 0.9M 98.68 94.92 96.73 85.98 82.77 84.32 83.91 80.79 82.30

2.7 million parameters, markedly fewer than the 20 million
parameters used by High-resolution. This demonstrates that
our model architecture is more lightweight and cost-efficient.

To provide a more comprehensive comparison between our
proposed models and the baselines, we train and evaluate High-
resolution on the MAESTRO v3 dataset. The results are shown
in Table II. From the baseline perspective, we observe that
HPPNet-sp outperforms High-resolution in note-level metrics.
Meanwhile, HPPNet-sp also has a significantly smaller model
size compared to High-resolution. When comparing our pro-
posed models with the baselines, it is observed that HRplus
wins in eight out of nine test metrics, especially in the F1 score,
which is significantly better than all other systems. Moreover,
we find that even with the smallest model size of only 0.9
million parameters, HRplus-hybrid still achieves the second
best results in six out of nine test metrics. It outperforms all
the baselines in F1 score for Onset & Offset and Onset, Offset
& Velocity. Specifically, HRplus-hybrid surpasses the High-
resolution system in both F1 score and Precision across all
metrics. This demonstrates our proposed models, combining
the advantages of High-resolution and HPPNet, are very ef-
fective in improving AMT performance as well as reducing
resource consumption.

We specifically analyze the model size among different
systems. First, since the dilated convolution can significantly
reduce the number of parameters, the model size of HRplus is
greatly reduced compared to that of High-resolution. Second,
in contrast to the approach taken by HRplus which utilizes dif-
ferent GRU+dilated conv block for individual outputs, HRplus-
hybrid shares one GRU+dilated conv block across all outputs,
thus achieving the smallest model size.

In addition, we note that the results of HR-hybrid are
slightly inferior to those of HRplus. A potential reason is

that HRplus-hybrid does not utilize conditional information
in its prediction outputs. Conversely, the use of conditional
information, especially onset information, has significantly
enhanced the final transcription performance, as evidenced in
the studies of [15], [17], [19].

V. CONCLUSIONS

In this paper, we utilize the CQT as the input representation
instead of the STFT to better adapt to musical signals, thereby
improving the transcription performance of the high-resolution
system. we design two architectures: the first is based on
a CRNN with dilated convolution, and the second is an
encoder-decoder architecture that integrates CRNN with a NR-
Transformer decoder. The experimental results demonstrate
that our proposed methods can effectively achieve consistent
improvements in note-level metrics without any extensions
or augmentations. Specifically, the proposed architectures use
only 2.7 million and 0.9 million parameters, respectively, com-
pared with the 20 million used by the high-resolution system.
Therefore, our systems can achieve the ideal transcription
without excessive resource consumption. In the future, we will
extend our models to other instruments and introduce transfer
learning methods to enhance transcription performance.
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[12] R. Kelz, S. Böck, and C. Widnaer, “Multitask learn-
ing for polyphonic piano transcription, a case study,”
in 2019 International Workshop on Multilayer Music
Representation and Processing (MMRP), IEEE, 2019,
pp. 85–91.
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