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Abstract—This paper introduces an innovative and automated
approach for the prediction of loudness growth curves based
on auditory brainstem responses (ABRs), harnessing the power
of deep learning and signal processing techniques. Hearing loss,
affecting a significant portion of the global population, calls for
accurate and efficient assessment methods to improve the quality
of life for affected individuals. Our method entails preprocessing
ABR signals, extracting informative features via empirical wavelet
transform with Fourier Bessel series expansion, and subsequently
mapping these features to loudness growth estimates using multi-
target regression. Through evaluation employing mean squared
error and Frechet distance, our approach demonstrates accept-
able performance and consistency across subjects and stimulus
levels. Importantly, it overcomes limitations inherent in existing
methods that primarily rely on click ABRs and psychoacoustic
measures.

I. INTRODUCTION

According to findings in [1] based on the Global Burden
of Disease Study 2019, every one person in five has hearing
loss. It can be congenital or may occur due to aging or
exposure to loud noise for prolonged periods. Hearing loss if
left undiagnosed and unattended adversely affects the quality
of life. It may hinder speech development in children and can
cause loneliness, isolation, depression, dementia, and cognitive
decline in the elderly [1]. Therefore, there is a need for
timely hearing screening tests followed by a prescription of
appropriate assistive hearing devices such as cochlear implants
or hearing aids. As the hearing loss varies in nature and
intensity, comprehensive hearing screening tests are needed
to assess the loss type and severity. The commonly used
procedures for assessment of auditory function include air
conduction and bone conduction pure-tone thresholds, speech
recognition thresholds, suprathreshold speech recognition, etc.
[2]. However, speech-based audiometric procedures have been
standardized for English-speaking adults and therefore not
suitable for hearing assessment of non-native English speakers.
Further, these tests require active participation and feedback
from the listeners during assessment which may be difficult
for children and infants.

Other methods of auditory function assessment include
otoacoustic emissions (OAEs) and auditory evoked potentials
(AEPs). They are useful for the assessment of infants and
young children and may be performed in addition to routine

audiometric measures for adults. AEP-based hearing threshold
estimation makes the estimation language independent and is
suitable for infants, children, and persons who lack the ability
to provide a reliable response to the stimuli. Perceived loudness
is a subjective quantity and is correlated to the physical sound
intensity. The human perception of loudness is a function
of stimulus intensity, stimulus frequency, and depends on
individual listener. It varies in complex ways that cannot be
accounted for by the listener’s threshold level. For example, in
listeners with sensorineural hearing loss the hearing thresholds
are elevated, and the perceived loudness increases rapidly as
compared to normal hearing listeners. Therefore, there is a
need for estimating the loudness growth along with hearing
thresholds and discomfort levels from physiological signals
like AEP or auditory brainstem response (ABR) for normal
as well as hearing-impaired listeners.

Numerous mathematical models have been developed to
estimate loudness growth as a function of stimulus intensity,
with early methods focusing on non-linear models for loudness
prediction. An initial model proposed a power law relationship
between loudness L (in Sones) and sound pressure level P
(in Pascals) as L = kP 0.6, which is accurate for higher
sound pressure levels relative to hearing threshold levels,
was proposed in [3]. Hellman and Zwislocki [4] refined this
model to L = 0.01(P − P0)

0.6, where P0 is a constant.
Buus and Florentine [5] further advanced the model by in-
corporating the effect of Signal-to-Noise Ratio (SNR) us-
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snrth, slo, and shi are free parameters and k is a scale factor
that does not affect the predictions of the model. In this
expression, sHL determines the extent to which the loudness at
threshold varies with the amount of hearing loss, snrth may
be considered the signal-to-noise ratio at threshold (reported
as SNRth = 10 log(snrth) dB), slo is the asymptotic exponent
of the loudness function at low levels, and shi is the asymptotic
exponent at high levels. Both the functions proposed are
suitable for use at higher stimulus. Further the exponent factor
is very different for different loudness levels. Particularly, the
loudness growth exponent was larger than 2 for stimulus levels
closer to the threshold and was smaller than 0.6 for moderate
and higher stimulus levels.



The procedures to measure loudness typically involve psy-
choacoustical methods such as Cross Modality Matching
(CMM) and Magnitude Estimation (ME), which rely on
patient responses and can yield inconsistent judgments [6].
Consequently, researchers have explored objective loudness
estimation using auditory brainstem responses (ABRs) [6],
[7]. Studies have correlated ABR features, especially Wave
V latency and amplitude, with psychoacoustical measures of
loudness growth. Pratt and Sohmer (1977) [8] utilized AME
and assessed ABR features including latency, amplitude, and
area of waves (I-V), finding correlations via power function
fitting but noting variability across subjects and sessions.
Davidson et al. ([9]) also explored Wave V correlations with
AME, using Spearman’s rank correlation coefficient across
stimulus levels, revealing correlations mainly across sessions.
In contrast, [10] identified Wave V latency correlations with
loudness in normal listeners but not in those with sloping hear-
ing loss. Objective evaluation of loudness discomfort levels has
been attempted by correlating Wave V features with subjective
assessments [11], [12].

Epstein Silva ([6], [7]) employed tone burst ABRs with
AME and CMM measures for objective loudness growth
estimation, employing MSE as an evaluation metric rather than
Pearson correlation coefficient used in previous studies. Hose-
ingholizade [13] investigated chirp-evoked ABRs, averaging
trials using Bayesian-informed weighted averaging and fitting
linear or power functions to estimate loudness growth based
on peak to trough amplitudes at different intensity levels.

Significant gaps persist in current research on loudness curve
estimation using auditory brainstem responses (ABRs). Earlier
methods have primarily relied on click ABRs, potentially
limiting robust analysis of loudness curves. Moreover, existing
methodologies heavily favor psychoacoustical measures like
Cross Modality Matching (CMM) and Magnitude Estimation
(ME), often overlooking other valuable ABR data aspects. This
bias restricts the full potential of ABR signals for comprehen-
sive feature extraction, typically focusing subjectively on pa-
rameters such as amplitude and latency. Furthermore, the field
has predominantly used polynomial and exponential functions
for loudness growth estimation, neglecting exploration into
advanced methods like deep learning and signal processing for
ABR data. Despite an extensive literature search, recent studies
on automated prediction of loudness growth curves using EEG
signals were notably absent, underscoring a critical research
gap. Our study addresses these limitations by proposing a
novel neural network-based approach, highlighting the need
for further research to enhance ABR-based loudness curve
estimation capabilities.

This paper introduces a novel approach employing deep
learning for automated estimation of the loudness growth
curves from the raw ABR signals. Moreover, we explore fea-
ture extraction technique, drawing from both signal processing
and deep learning methodologies, to predict loudness growth
curves. The proposed methodology encompasses several key
steps: i) Pre-processing of ABR signals and loudness growth

data, ii) Extracting features from ABR data through a signal
processing approach called empirical wavelet transform with
band boundaries determined by Fourier Bessel series expansion
(EWT-FBSE), and iii) Mapping the extracted EWT-FBSE fea-
tures to corresponding psychoacoustical estimates of loudness
growth utilizing Multi-target Regression. We evaluating the
efficacy of the proposed approach through objective measures
such as mean squared error and Frechet distance and use the
Physiobank database [14] for training and testing the proposed
model.

II. METHODOLOGY

The steps involved in estimation of the relationship between
the raw ABR signals and loudness growth curve are explained
in the following subsections.

A. Pre-processing of ABR signals and loudness growth data

The processing of the raw files present in the Physiobank
“Evoked Auditory Responses in Normals across Stimulus
Level” database [14]. It involves extraction of the ABR signal
and its metadata using functions from the WaveForm DataBase
(WFDB) Toolbox from MATLAB. The database consists of
two sets of signals - ABR and OAE and two sets of psychoa-
coustical estimates of loudness as a function of peak sound
pressure level (peSPL)- Cross Modality Matching (CMM) and
Magnitude Estimation (ME). There are 2002 samples per trial
for 8 normal hearing listeners (four males, four females) with
ages 19-31 with audiometric thresholds not exceeding 15 dB
HL at octave frequencies 250 Hz - 2 kHz.

The raw ABR signal is averaged over the first 1000 trials
for each loudness level to reduce the effect of noise in
analysis. The stimuli are originally sampled at 48 kHz and
they resampled to 2 kHz, 3 kHz, 5 kHz and 10 kHz. The
power spectrum and spectrogram as shown in Figure 1 are
used to examine the signal’s frequency content. It can be seen
that the frequency content is in the range of 0 – 2.5 kHz and
in the power spectrum plots, peaks are primarily observed in
the 0 - 1.5 kHz range. Thus, for further analysis, the sampling
frequency is taken as 3 kHz.

B. Feature extraction

For feature extraction, we begin by decomposing each
raw ABR signal using wavelet transform. Wavelet transform,
known for its multiresolution analysis properties, is chosen
as a suitable method for signal analysis. Empirical wavelet
transform (EWT) is specifically employed to decompose the
pre-processed signals into a set of intrinsic modes, effectively
separating dominant modes from irrelevant ones. This ap-
proach has proven to be highly valuable, particularly when
analyzing non-stationary and noisy signals. However, it’s worth
noting that EWT may not achieve an accurate representation
of frequency compo nents in signals with shorter durations.
Additionally, when frequency components are closely spaced,
EWT may not be as effective. To address these limitations, we
employ Fourier Bessel series expansion (FBSE) to compute
band boundaries within the EWT framework. This combination
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(a) a) Power spectrum (b) b) Spectrogram

Fig. 1: a) Power spectrum and b) spectrogram for averaged ABR signal sampled at 5 kHz.

of EWT and FBSE allows us to overcome these challenges,
ensuring a more robust and accurate decomposition of the ABR
signals for subsequent analysis. The computation of EWT-
FBSE is done using the following procedure in [15]:

S(i) =
2

N2J1(τi)]2
[
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ns(n)J0

(τin
N

)
i = 1, 2, 3....N (1)

where J0(.) and J1(.) are 0th and 1st order Bessel functions,
respectively. The N positive roots of J0(τk) = 0 are τi for
i = 1, 2, . . . , N . The frequency of signal fi (Hz) and τi are
related mathematically as τi ≈ 2πfiN

Fs
, where Fs represents

a sampling rate of the signal. For designing the filter banks
based on the FBSE-EWT method, the obtained FBSE spectrum
was segmented based on i-th order range boundaries using the
scale-space boundary detection method [16]. First (ω1) and last
(ωN ) boundary frequency values are 0 and π, respectively. The
optimal set of boundary frequencies for adaptive segments are
denoted as ωi. The empirical scaling and wavelet functions
are applied to design the band-pass filters on each adaptive
segment of the FBSE spectrum. Wavelet-based band-pass
filters were constructed based on [17].

C. Mapping the features to psychoacoustical estimate of loud-
ness growth

The next step is mapping the extracted features from ABR
signals to the corresponding psychoacoustical estimate of
loudness growth. CMM is taken as the measure of the loudness
growth (ranging from -1 to 2). This step involves mapping
the features from ABR signals for all stimulus levels to the
corresponding loudness growth curve for a given individual.
This is achieved using multi-target regression (MTR) based
convolutional neural network (CNN) that helps in learning
the correlation between the features from ABR signals for
different stimulus levels and the loudness growth curve. For
prediction of the entire loudness growth curve in one go, MTR
is beneficial as it facilitates simultaneous prediction of multiple
continuous variables from a set of input variables. The output
of MTR is given to a dense layer to obtain the final loudness
growth curve for a listener. A deep hard sharing-based network
is used for MTR which is connected to a fully dense layer
with a linear activation in the third and final stage to predict
the loudness growth curve with the number of outputs equal to
the number of loudness levels of stimuli present in the input
EWT data. The proposed architecture is shown in Figure 2.

The Multi-Target Regression Block in our methodology
employs a CNN that captures both spatial and temporal char-
acteristics within datasets. In our specific context, the extracted

features are essentially two-dimensional, as they pertain to
different stimulus levels and for each level it has 10-band
EWT-FBSE coefficients. The CNN architecture consists of a
convolutional layer, a max-pooling layer, and a dropout layer,
which collectively capture the spatial dependencies within
the data. The convolutional layer utilizes 32 filters of size
3x3, effectively discerning spatial patterns with padding set to
“same” and a stride of 1. The dropout layer randomly omits a
fraction of connections from the preceding layer, promoting
model generalization. Batch Normalization is applied after
each convolutional block to normalize the extracted features.

In a general MTR framework, inputs are represented as
continuous variables. For an input vector X of dimension d,
the output space has a dimension q. Each multi-target example,
denoted as Xi and Yi, defines the input-output relationship
between vectors of dimensions d and q, respectively. In this
supervised deep learning approach, the deep forward network
incorporates shared layers where parameters are common
among different input variables. The advantage of using a
shared DNN architecture lies in its ability to reduce the number
of parameters compared to separate networks for each band,
thus enhancing computational efficiency and potentially im-
proving generalization by leveraging shared knowledge across
different inputs. The shared architecture is followed by non-
shared layers, leading to the ultimate target output vector. In
our implementation, we construct a shared deep neural network
wherein the band outputs serve as features inputted into a
shared CNN. The CNN’s output is then connected to a fully
connected dense layer, facilitating the prediction of the final
set of loudness growth estimates using CMM. In essence,
this process yields the loudness growth curve tailored to the
individual under consideration.

III. ARCHITECTURE DETAILS OF MTR CNN MODEL

In the implementation of the proposed architecture, a shared
deep neural network is developed where the band outputs are
first fed into the neural net as features in a shared CNN.
The output of the shared CNN is then connected to a fully
connected dense layer to predict the final set of loudness
growth CMM estimates, i.e., the loudness growth curve for the
given individual. The architecture details are given in Table I.

IV. EXPERIMENTS AND EVALUATION

A. Model hyperparameters, loss function, and platform

For training the proposed model, we partitioned the dataset
into training and testing subsets, following an 85-15 ratio. For
the training process, we employed the Adam optimizer. The
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Fig. 2: Prediction of loudness growth using proposed approach.

TABLE I: Architecture Details of MTR CNN Model

Layer Type Output Shape Number of Parameters

Input 12, 10, 126 0
Conv 2D-1 12, 10, 32 36,320
Conv 2D-2 4, 3, 32 9,248
Conv 2D-3 2, 2, 32 9,248
Final Dense 12 1,548

Total Parameters 61,484

choice of Mean Squared Error (MSE) as the loss function
is motivated by its superior performance in capturing the
correlation between the output and non-linear features, as
opposed to other loss functions such as Mean Absolute Error
(MAE) and Pearson Correlation. To ensure that the validation
loss remained under control during training, we implemented
an early stopping mechanism with a patience parameter set
to 40. Our model underwent training for a maximum of 500
epochs, utilizing two Nvidia RTX A4000 GPUs, each equipped
with 16 GB of memory. The learning rate was set at 0.0001,
and we used a batch size of 12 to optimize the training process
efficiently.

B. Evaluation metrics

For evaluating the performance of our model, we em-
ploy two key metrics. The first metric is the Average Mean
Squared Error, which quantifies the disparity between the
CMM loudness growth estimate and the predicted loudness
growth estimate. This metric serves as a crucial performance
measure, gauging the accuracy of our predictions. Additionally,
we utilize the Frechet distance [18] to assess the similarity be-
tween two curves. In our specific context, the Frechet distance
is employed to measure the likeness between the predicted
loudness growth curve and the ground truth loudness growth
curve. This metric is defined as the smallest value among the
maximum pairwise distances between the two curves. Notably,
we utilize the discrete Frechet distance variant due to the
discrete nature of our data points.

V. RESULTS

In this study, we aimed to identify the optimal model for pre-
dicting a generalized loudness growth curve. To achieve this,
we modified our approach by leveraging a dataset encompass-
ing seven subjects. The dataset includes detailed measurements
of auditory responses, allowing us to train and evaluate our
models effectively.

To ensure a robust evaluation, we adopted a cross-validation
strategy. In each iteration of this strategy, we set aside one
subject’s data as the test set while using the remaining sub-
jects’ data for training the model. This leave-one-out approach
allowed us to systematically predict the loudness growth curve
for each subject and subsequently compare the predictions to

the ground truth curves. This method not only ensures that each
subject is tested independently but also helps in understanding
how well the model generalizes to unseen data.

To provide a comprehensive view of the model performance,
we present a comparative analysis in Table II. The table
includes the average Mean Squared Error (MSE) and standard
deviation for models developed using K-Fold resampling to
predict the loudness growth curve across all subjects. In this
context, K-Fold resampling ensures that the training and testing
processes are repeated multiple times, enhancing the reliability
of the performance metrics. The columns in the table contain
the average MSE (standard deviation) scores across stimulus
intensity levels ranging from 45 dB to 100 dB for different
subjects within a given fold. Each model, denoted as Mx, is
the model that has not seen subject x during training. The rows
correspond to the scores obtained when the model is evaluated
using a particular subject, providing a detailed performance
metric for each individual.

Key observations from Table II reveal insightful patterns
in the performance of different models across subjects. Each
model, denoted as Mx where x ranges from 1 to 7, was
trained by leaving out data from one specific subject during
each iteration of cross-validation. The table presents average
Mean Squared Error (MSE) scores along with their standard
deviations across stimulus intensity levels from 45 dB to 100
dB for each subject-model pair. The models exhibit relatively
consistent performance with minor variations. Model M6

consistently shows slightly better performance compared to
others, indicated by lower average MSE scores across subjects.
For instance, it achieves an average MSE of 0.01 (with a
standard deviation of 0.09) for Subject 1 and 0.37 (with a
standard deviation of 0.18) for Subject 7. This suggests that
M6 effectively generalizes well to unseen data, possibly due
to the characteristics of the training data it was exposed to.
Model M1, while not consistently the best performer across all
subjects, shows notable strength in predicting loudness growth
curves for Subject 1, with an MSE of 0.06 (standard deviation
0.19). This performance makes it a promising candidate for
further evaluation, especially considering its effectiveness in
predicting unseen data for Subject 1.

Overall, the table underscores the robustness of the models
in predicting loudness growth curves across different subjects,
highlighting the importance of cross-validation in evaluating
model performance. The standard deviations provide insights
into the variability of predictions, further aiding in understand-
ing the reliability of each model’s performance metrics. These
findings support the selection of Model M1 for subsequent
analyses and comparisons against existing methodologies, en-
suring rigorous evaluation and validation of our approach.

Table III compares the Mean Squared Error (MSE) scores
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TABLE II: MSE scores averaged across all loudness levels and test cases (Standard deviations) for 7 models and for 7 subjects

Subject M1 M2 M3 M4 M5 M6 M7

1 0.06 (0.19) 0.02 (0.13) 0.03 (0.15) 0.02 (0.15) 0.02 (0.14) 0.01 (0.09) 0.01 (0.11)
2 0.28 (0.05) 0.41 (0.07) 0.37 (0.05) 0.26 (0.05) 0.23 (0.05) 0.27 (0.11) 0.16 (0.09)
3 0.15 (0.14) 0.24 (0.10) 0.22 (0.14) 0.14 (0.14) 0.12 (0.13) 0.12 (0.08) 0.06 (0.09)
4 0.06 (0.24) 0.04 (0.20) 0.05 (0.30) 0.10 (0.30) 0.07 (0.24) 0.04 (0.18) 0.08 (0.21)
5 0.09 (0.24) 0.05 (0.19) 0.06 (0.22) 0.09 (0.25) 0.27 (0.18) 0.08 (0.23) 0.12 (0.27)
6 0.06 (0.24) 0.07 (0.27) 0.06 (0.24) 0.06 (0.23) 0.07 (0.24) 0.11 (0.32) 0.13 (0.29)
7 0.33 (0.12) 0.22 (0.14) 0.25 (0.12) 0.34 (0.11) 0.39 (0.12) 0.37 (0.18) 0.51 (0.17)

TABLE III: Comparison of MSE scores averaged across all loudness levels and test cases for Model M1 and method in [6], [7]

Models 1 2 3 4 5 6 7
M1 0.06 0.28 0.15 0.06 0.09 0.06 0.33

Silva and Epstein [6], [7] 0.19 0.03 0.08 0.08 0.15 0.29 0.11

TABLE IV: Frechet Distance Obtained for All Subjects for Model M1

Models 1 2 3 4 5 6 7
M1 0.37 0.75 0.62 0.61 0.83 0.53 0.98

40 50 60 70 80 90100

0.00
1.00
2.00
3.00

C
M

M
V

al
ue

s

40 50 60 70 80 90100

0.00
1.00
2.00
3.00

40 50 60 70 80 90100

0.00
1.00
2.00
3.00

40 50 60 70 80 90100

0.00
1.00
2.00
3.00

Stimulus Level(dB)

C
M

M
V

al
ue

s

40 50 60 70 80 90100

0.00
1.00
2.00
3.00

Stimulus Level(dB)

40 50 60 70 80 90100

0.00
1.00
2.00
3.00

Stimulus Level(dB)

40 50 60 70 80 90100

0.00
1.00
2.00
3.00

Stimulus Level(dB)

Fig. 3: Comparison of predicted (orange) and ground truth (red) loudness growth curve for seven subjects using model M1.

averaged across all loudness levels and test cases for Model
M1 with those reported by Silva and Epstein [6], [7]. The table
illustrates how Model M1, selected based on its performance
in predicting loudness growth curves for subjects at a stimulus
frequency of 1 kHz, compares against established methodolo-
gies. Each entry in the table represents the MSE score for a
specific subject, ranging from 1 to 7, indicating the predictive
accuracy of Model M1 relative to the referenced models.

Key observations reveal that Model M1 consistently
achieves competitive MSE scores across different subjects
compared to Silva and Epstein’s approach. Notably, Model
M1 exhibits strengths in predicting loudness growth curves
for certain subjects, such as Subject 1 with an MSE of 0.06,
demonstrating its efficacy in capturing variations in loudness
perception across different stimuli intensities. These findings
underscore the robustness of Model M1 in predicting loudness
growth curves and highlight its potential for advancing the
understanding and application of predictive models in auditory
perception research.

Table IV provides the Frechet distance scores calculated for
Model M1 across all seven subjects. The Frechet distance is
a metric used to measure the similarity between two curves,
typically comparing the predicted and ground truth loudness
growth curves. A lower Frechet distance indicates a closer
match between these curves. The scores in Table IV range

from 0.37 to 0.98 across subjects 1 to 7, illustrating the
varying degrees of accuracy in predicting loudness growth
curves using Model M1. Lower Frechet distances, such as 0.37
for Subject 1, indicate a closer match between the predicted
and ground truth curves, suggesting that Model M1 performs
well in predicting loudness growth for some subjects but shows
greater deviation for others.

To facilitate a thorough evaluation, we have generated visual
representations of the predicted and ground truth loudness
growth curves for all subjects using M1, presented in Figure
3. This figure depicts the relationship between CMM-value
and intensity level (dB). In Subject 1, the predicted loudness
growth curve closely mirrors the ground truth curve, indicative
of model M1’s ability to accurately reproduce observed trends.
This alignment is substantiated by a low Frechet distance of
0.37 (Table IV), underscoring the model’s fidelity in predicting
loudness responses in this specific case. Conversely, in Subject
7, discrepancies between the predicted and ground truth curves
are more apparent, reflected in a higher Frechet distance of
0.98 (Table IV). Overall, the visual analyses presented in
Figure 3 complement the quantitative metrics detailed in Tables
II and IV, offering a comprehensive evaluation of model M1’s
performance across a diverse cohort.
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VI. CONCLUSION

Hearing loss represents a significant public health issue with
profound implications for quality of life. In this study, we
have introduced a novel approach employing deep learning
to automate the estimation of loudness growth curves from
raw Auditory Brainstem Response (ABR) signals, offering a
valuable tool for hearing assessment. Our methodology en-
compasses several crucial steps: preprocessing of ABR signals
and loudness growth data, feature extraction utilizing empir-
ical wavelet transform with Fourier Bessel series expansion,
and mapping these features to psychoacoustical estimates of
loudness growth through multi-target regression.

The evaluation of our approach incorporates objective met-
rics such as Mean Squared Error (MSE) and Frechet distance,
providing a rigorous quantitative assessment of our model’s
performance. Our experimental findings demonstrate the effec-
tiveness of our method, showcasing competitive performance
across diverse subjects and stimulus intensity levels. Notably,
Model M1 emerged as the top performer, particularly adept at
predicting unseen loudness growth curves.

Comparative analysis with a prior study by Silva and Epstein
underscores the favorable outcomes of our approach in terms
of MSE and Frechet distance metrics. This highlights the
robustness and reliability of our model in estimating loudness
growth curves from ABR signals.

In summary, our study represents a significant advancement
in hearing assessment techniques by introducing a robust and
automated method for loudness growth curve estimation. This
approach has the potential to deepen our understanding of
auditory perception and facilitate the development of per-
sonalized solutions for individuals with varying degrees of
hearing impairment. Future research directions should focus on
validating and refining our model in populations with hearing
impairments, thereby broadening its applicability and impact
in clinical settings.
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