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Abstract—This paper proposes a deep contextual video coding
network that integrates transformational jumps. The network
takes a sequence of original in-screen content video frames as
input and extracts motion features through motion estimation
and a motion information encoder, with motion compensation
occurring during decoding. It also extracts contextual information
in the feature domain through a context encoder. This contextual
information assists in both context encoding and decoding, as
well as entropy encoding. By using contextual information as a
condition for conditional encoding, the network transitions from
predictive coding to conditional coding, aiding in the high-quality
reconstruction of high-frequency content. The motion information
encoder introduces a transformational jump branch into the
analysis and synthesis process. This branch has the ability to
extract coarse features and reconstruct them, thereby enhancing
the encoding and decoding of visual signals. Finally, experiments
confirm that this algorithm effectively improves the encoding
performance of screen content videos.

I. INTRODUCTION

In recent years, digital device advancements have made
screen content images and videos central to communication.
The growing data volume challenges image and video encod-
ing technologies. Emerging needs in online education, virtual
meetings, and cloud gaming highlight the urgency for efficient
screen content encoding. This encoding aims to represent
images and videos compactly with minimal visual quality loss,
reducing storage and bandwidth use.

Camera-captured images often contain sensor noise and
complex textures, whereas screen content images, typically
computer-generated, are noise-free with discrete tones and
fewer colors. They have finer lines, sharper edges, and
more repetitive patterns. Traditional video encoding, designed
for camera footage, uses a less effective hybrid prediction-
transformation structure for screen content, risking detail loss
and edge distortion. Current screen content encoding schemes,
based on traditional methods, independently encode segmented
blocks, ignoring overall content and causing high complexity.
This paper contrasts video screen content encoding with tradi-
tional and deep video encoding algorithms H.264[1], H.265[2],
DVC[3], Hu ECCV[4], Lu ECCV[5], FVC[6], DVCpro[7],
EA CVPR[8], and RLVC[9].

Existing end-to-end compression schemes, focused on nat-
ural images, overlook screen content image compression. The
latter, being computer-generated, are noise-free with unique

patterns and textures, affecting compression efficiency. Di-
rectly applying existing learning-based image compression
approaches to screen content results in decreased rate and dis-
tortion performance. This paper aims to enhance the compres-
sion performance of screen content images. Inspired by deep
contextual information and the concept of transform-skipping,
we propose an end-to-end compression scheme for video
screen content. Specifically, the proposed model thoroughly
considers the characteristics of screen content, utilizing deep
contextual learning to capture the high-frequency content in
screen images, and applies deep contextual knowledge for the
compression and reconstruction of video frames. Furthermore,
a transform-skipping branch is integrated into the motion codec
process. This branch, capable of coarse feature extraction
and reconstruction, effectively extracts multidimensional, high-
dimensional features from screen content images. As a result,
visual signals can be more simply interpreted at the encoder
end and restored at the decoder end.

II. OVERALL NETWORK STRUCTURE

To enhance screen content compression, this paper intro-
duces a deep video compression algorithm tailored for screen
content’s high texture contrast and sharp edges. Utilizing deep
contextual information and transform-skipping, the algorithm’s
structure, depicted in Figure 1, comprises a context codec and
a motion information codec.

The algorithm processes video screen content frame se-
quences. Initially, motion estimation extracts motion infor-
mation vt from input and reference frames. The motion
information codec, using a convolutional neural network
with transform-skipping, compresses this information. The
transform-skipping branch, adept at coarse feature extraction
and reconstruction, simplifies screen content perception in its
two branches and finely processes it in the main branch. This
allows for straightforward encoding and precise reconstruction
at the decoder end into v̂t. The second part utilizes the
reconstructed motion information v̂t and high-dimensional
features of the reconstructed reference frame x̂t−1, or x̃t−1.
These undergo warping and context mapping to produce
deep contextual information xt. This context information then
aids the context encoder and decoder in reconstructing high-
frequency content, enhancing video quality. The context de-
coder outputs the reconstructed frame x̂t−1, with distortion



calculated against the input frame xt. The bitrate, derived from
the high-dimensional features mt and yt quantized and entropy
coded into a bitstream, is calculated alongside distortion.
These metrics form the rate-distortion loss function, crucial
for network optimization during training.
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Fig. 1. Deep Context-Based Screen Content Coding Network.

The network framework of this paper can be represented as
follows:

x̂t = fcontext(x̂t−1) = fdec(fenc(xt | xt) | xt)⊗ xt (1)

In this representation, xt denotes the input frame, x̂t represents
the predicted or reconstructed frame, xt signifies the generated
high-dimensional context, and x̂t−1 is the reference frame, i.e.,
the reconstructed previous frame. The function fcontext() is
responsible for generating the context xt. fenc() and fdec()
are the context encoder and decoder, distinct from the motion
encoder and decoder. The deep contextual information is
generated in a higher-dimensional feature domain, containing
multidimensional, high-dimensional features. This provides a
richer and more relevant set of conditions for encoding xt,
particularly for its high-frequency content.

III. MOTION ENCODING NETWORK

A. Motion Encoding Network Based on Transform Skipping
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Fig. 2. Motion coding networks based on transform jumps.

This section details how integrating transform skipping into
an end-to-end encoding framework can boost screen content

image compression. Traditionally, transform skipping effec-
tively handles sparse motion compensation residuals and intra
prediction in screen content compression [10]. The motion
encoding network’s structure, based on transform skipping, is
depicted in Figure 2. Our video screen content compression
framework features an autoencoder-style encoder and decoder,
with the multi-scale transform skipping encoder built upon the
hyperprior model from Balle et al [11].

Figure 2 shows that the transform-skipping-based motion
encoding network comprises convolutional, GDN, and ReLU
layers. It features three branches in both the encoder and de-
coder, with most convolutional layers having a 5x5 kernel size
and 128 channels (N=128). In the main branch, convolutional
layers have a stride of 2, while the two side branches have
strides of 4 and 8, respectively. This setup allows for local
feature extraction while transform skipping captures larger-
scale features, efficiently reducing spatial redundancy.

At the encoder, motion information vt feeds into three
scale analysis branches: a forward transform branch Ta and
two transform skipping branches Tts1 and Tts2. The forward
transform branch Ta, resembling existing analysis transform
structures, employs four sequential convolutional layers with a
stride of 2. The transform skipping branches Tts1 and Tts2 use
two convolutional layers each, with strides of 4 and 8, and a
5x5 kernel size with N channels. These branches collectively
process the visual signal at different scales, extracting high-
dimensional features across various scales. The Ta, Tts1, and
Tts2 branches generate the latent codes ya, yts1 and yts2, as
follows:

ya = Ta(vt, θa)

yts1 = Tts1(vt, θts1)

yts2 = Tts2(vt, θts2)

(2)

In this context, θa, θts1 and θts2 represent the model
parameters of the main transform branch and the two transform
skipping branches, respectively. The high-dimensional feature
y is a combination of ya, yts1 and yts2 as shown below.

y = ya + yts1 + yts2 (3)

Quantization is applied to the noise representation of
the high-dimensional features, where ỹ denotes the high-
dimensional feature, and ŷ is encoded into the bitstream as
an entropy value.

ŷ = Q(ỹ) (4)

This paper assumes that the distribution of the high-
dimensional feature ỹ follows a zero-mean Gaussian distri-
bution. The motion encoding network based on transform
skipping predicts the scale of each distribution conditioned
on the hyperprior z. In this section, two transform skipping
branches are designed for the encoding and decoding processes
of motion encoding. During the encoding process, the main
branch and the two transform skipping branches separately

2



generate za, zts1 and zts2. The hyperprior feature represented
by z can be expressed as follows:

z = za + zts1 + zts2 (5)

After quantization, z is compressed using the entropy model
[12]. At the decoder end, it is input into the hyperprior
decoder. The main reconstruction branch and the two transform
skipping reconstruction branches in the hyperprior decoder
yield the standard deviation σ̂ of the Gaussian distribution.
Then, σ̂ is sent to the arithmetic encoder and decoder to
generate the probability distribution of ŷ for encoding and
decoding.

Similarly, reconstructing the motion information v̂t from
the high-dimensional feature ŷ involves three branches. The
main reconstruction path and the two transform skipping
reconstruction paths are described as follows:

v̂a = Ra(ŷ, δa)

v̂ts1 = Rts1(ŷ, δts1)

v̂ts2 = Rts2(ŷ, δts2)

(6)

Here, Ra, v̂ts1 and v̂ts2 respectively represent the main
reconstruction branch and the two transform skipping branches
in the decoder. δa, δts1, and δts2 respectively denote the
network parameters of the main reconstruction branch and the
two transform skipping branches in the decoder. Finally, the
outputs of the main reconstruction branch and the two trans-
form skipping branches are summed to obtain the reconstructed
motion information v̂t, as expressed in Equation 7:

v̂t = v̂a + v̂ts1 + v̂ts2 (7)

Finally, the quantized high-dimensional feature ŷ and the
hyperprior feature ẑ, along with their formed bitstream, are
used by the entropy model to calculate the bitrate. This is used
in the training process’s loss function to optimize the overall
video screen content encoding network.

B. Feature Extraction and Contextual Refinement Networks
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Fig. 3. Feature Extraction and Contextual Refinement Network.

This paper introduces a feature extraction network to gener-
ate contextual information in the feature domain. It consists of
a convolutional layer with 64 channels, a 3x3 kernel size, and
a stride of 2, followed by three 64-channel residual blocks with
a 3x3 kernel size. The reference frame x̂t−1 inputs into this
network, and through these layers, high-dimensional features
x̃t−1 are obtained, shifting reference coordinates from the pixel

to the feature domain. A warp function, using motion infor-
mation v̂t, distorts x̃t−1 to produce the preliminary context
ẍt. However, this initial context is coarse, as the warping
may cause spatial misalignment. To enhance the preliminary
context ẍt, a context refinement network is employed. It
comprises a 64-channel residual block with a 3x3 kernel size
and a convolutional layer with 64 channels, a 3x3 kernel size,
and a stride of 2. This network refines the initial context,
addressing spatial discontinuities from warping, resulting in
the final deep contextual information xt. Figure 3 illustrates
the specific structures of both the feature extraction and context
refinement networks. The process of feature extraction and
context generation is summarized as a context generation
function, detailed in Equation 8.

fcontext(x̂t−1) = fcr(warp(ffe(x̂t−1), v̂t)) (8)

fcontext() uses motion information v̂t to guide context
extraction and expand the learning area for the context. This
generation process is akin to motion compensation in the
feature domain. Without feature extraction, applying motion
compensation directly in the pixel domain would mean that
the learned context remains tied to the pixel domain. This
could limit the relevance between the context’s corresponding
positions and the input frame xt, reducing its efficacy in com-
pressing xt. Therefore, the feature extraction module is crucial.
Deep contextual information in the feature domain holds exten-
sive information, significantly enhancing the compression of
high-frequency content. Furthermore, feature-domain context,
as opposed to pixel-domain motion compensation, allows the
network to utilize a larger reference area for extracting useful
features.

IV. CONTEXT CODING NETWORK
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The context encoding network is mainly composed of convo-
lutional layers, GDN layers, and residual blocks. In the context
encoder, the key components are 64-channel convolutional
layers with a 5x5 kernel size and a stride of 2. Conversely,
the context decoder primarily utilizes 64-channel convolutional
layers with a 3x3 kernel size and a stride of 2, as detailed
in Figure 4. The context encoder’s input includes the current
frame xt and context xt, which it encodes into 96-channel, 16x
downsampled high-dimensional latent features yt. The context
decoder begins by upsampling these latent features ŷt to the
original resolution, then concatenates them with the context xt

to produce the final reconstructed frame x̂t.
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V. ENTROPY MODEL

According to [13], the cross-entropy between the estimated
probability distribution and the actual distribution of the latent
codes represents a tight lower bound of the actual bitrate,
which can be expressed as:

R(ŷt) ≥ Eŷt∼qŷt
[−log2pŷt

(ŷt)] (9)

In this paper, pŷt(ŷt) and qŷt(ŷt) represent the estimated
and actual probability density functions of the quantized ŷt,
respectively. Arithmetic coding is employed to encode latent
codes at a bitrate closely matching the cross-entropy, resulting
in a negligible discrepancy between the actual bitrate R(ŷt)
and the cross-entropy bitrate. The primary goal is to develop
an entropy model that precisely estimates the probability
distribution pŷt(ŷt).
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Fig. 5. Structure diagram of entropy model.

Figure 5 illustrates the entropy model’s structure. Initially,
a hyperprior model [11] learns hierarchical priors within yt.
Next, an autoregressive network with a mask convolutional
layer learns spatial priors in yt’s quantized bitstream. While
hierarchical and spatial priors are standard in deep image
compression, video features also exhibit temporal correla-
tions, necessitating the removal of temporal redundancy. To
address this, a temporal prior encoder analyzes the temporal
correlations in xt, generating temporal priors. Subsequently, a
prior fusion network combines these three priors: hierarchical,
spatial, and temporal. It estimates the mean and variance of
ŷt’s distribution. These estimates assist the arithmetic encoder
and decoder in efficient entropy encoding and decoding of yt.
This paper assumes the mean and variance of pŷt

(ŷt) follow
a Laplacian distribution. The expression for pŷt(ŷt) is:

pŷt
(ŷt | xz, ẑt) =

∏
i

(L(µt,i, σ
2
t,i) ∗ U(−1

2
,
1

2
))(ŷt,i)

µt,i, σt,i = fpf (fhpd(ẑt), far(ŷt,<i), ftpe(xt))

(10)

In Equation 10, the index i represents the spatial position.
fhpd() is the function form of the hyperprior decoding network,
far() is the function form of the autoregressive network, ftpe()
represents the function of the temporal prior encoder network
used for learning the temporal correlations in the contextual
information, and fpf () is the function form of the prior fusion
network. far(ŷt,<i) and ftpe(xt) respectively learn the spatial

and temporal priors, while fhpd(ẑt) learns the supplementary
information that cannot be derived from spatial or temporal
correlations.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Comparison and analysis of experimental results

To validate our proposed algorithm, we tested it on three
videos from the HEVC Class F dataset, focusing on key
foreground targets and overall content. We compared its perfor-
mance against advanced video compression algorithms, includ-
ing H.264[1], H.265[2], DVC[3], Hu ECCV[4], Lu ECCV[5],
FVC[6], DVCpro[7], EA CVPR[8], and RLVC[9], using
PSNR and MS-SSIM metrics. Despite the limited availability
of end-to-end video screen content encoding algorithms, we
included notable natural image video encoding algorithms in
our comparison.

Fig. 6. Algorithm test results.

Our results, illustrated in Figure 6, show the proposed algo-
rithm’s superiority on the HEVC Class F dataset. The left side
of the figure compares PSNR-bpp rate-distortion curves, while
the right side focuses on MS-SSIM-bpp rate-distortion curves.
The proposed algorithm outperforms others in both PSNR and
MS-SSIM at higher bpp values, especially in MS-SSIM. It
maintains this advantage even at lower bpp values, indicating
its overall superior performance. Compared to natural image
video encoding, our algorithm’s PSNR and MS-SSIM values
are higher, likely due to screen content characteristics like ab-
sence of noise, high contrast, sharp edges, and repetitive areas,
which reduce spatial redundancy and complexity, enhancing
performance in screen content encoding.

B. Ablation Experiment

To validate the effectiveness of the subnetworks in the deep
video compression algorithm proposed in this paper, experi-
mental tests were conducted on the HEVC Class F dataset,
focusing on the motion codec network, feature extraction
network, and context refinement network. The results of these
experiments were then compared with the overall performance
of the deep video compression algorithm proposed in this
paper, as shown in Figure 7.

Figure 7 displays, on the left, the PSNR-bpp rate-distortion
curve comparisons between the proposed algorithm and several
ablation algorithms. On the right, it presents the MS-SSIM-bpp
rate-distortion curve comparisons. The curve labeled “Ours”
represents the test results of the video compression algorithm
proposed in this paper.
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Fig. 7. Comparison of ablation results

The curve “W/O CR,” shows results without the context
refinement network. Using distorted high-dimensional features
directly for motion information, it forgoes context refinement,
leading to spatial discontinuities. This impacts the context
codec network and entropy model, reducing PSNR by about
0.4dB and MS-SSIM by 0.002. The curve “W/O FE,” repre-
sents results lacking the feature extraction network. It directly
employs motion information to distort the reference frame,
leaving context in the pixel domain with limited information
depth. This approach decreases PSNR by roughly 0.9dB and
MS-SSIM by 0.007. The curve “W/O MVC,” indicates results
without the motion codec network. Foregoing our CNN-based
motion codec network for direct motion encoding, this method
fails to adequately reduce spatiotemporal redundancy, decreas-
ing PSNR by approximately 1.5dB and MS-SSIM by 0.013.
We also tested the efficacy of transform skipping branches in
our motion encoding network on the HEVC Class F dataset.
These tests, shown in Figure 8, compared configurations with
only the main branch, one transform skipping branch, and the
two original transform skipping branches from our method.

Fig. 8. Transform skip branch verification results

Figure 8 displays rate-distortion curve comparisons: PSNR-
bpp on the left and MS-SSIM-bpp on the right. The ”TS=1”
curve shows results with one transform skipping branch,
specifically the one with a convolution stride of 4. This
setup slightly reduces performance, with an approximate 0.1dB
decrease in PSNR and 0.002 in MS-SSIM. The minor impact
suggests that the remaining branch effectively learns larger-
scale features. Additionally, the algorithm’s multi-layer convo-
lutional networks contribute to learning larger-scale features.
The ”TS=0” curve, indicating results without transform skip-
ping branches and relying solely on the main branch, shows
a more significant reduction in performance: about 0.4dB in
PSNR and 0.005 in MS-SSIM. This underlines the importance
of transform skipping branches in enhancing screen content
encoding.

VII. CONCLUSION

This paper focuses on the underexplored area of screen
content images, distinct from natural video images, by devel-
oping a deep contextual screen content encoding network. It
specifically addresses screen content characteristics like noise-
less patterns, high repetitiveness, high texture contrast, and
sharp edges. The network includes a motion encoding network
featuring transform skipping, highly effective in compressing
screen content motion information. Initially, the paper outlines
the network’s overall structure. It then describes the functions
and principles of its various modules: motion encoding net-
work, feature extraction network, context refinement network,
context encoding network, and entropy model. Experimental
tests on the HEVC Class F dataset and comparative analyses
with other methods demonstrate the proposed algorithm’s
superior performance in objective evaluation metrics. Ablation
studies further affirm the significance of each sub-module,
validating the innovation and effectiveness of this approach.
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