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Abstract— This research introduces an innovative approach to 

few-shot sound classification applied to classroom sound 

recordings that integrates Label Set Operation (LaSO) features 

with Prototypical Networks. Traditional audio classification 

methods often require extensive labeled datasets, which can be 

impractical in real-world scenarios where obtaining large 

amounts of labeled audio data is challenging. This is particularly 

the case for the target application of automatically annotating long 

recordings of classroom audio to understand student learning in 

classrooms. This paper proposes an enhanced few-shot learning 

approach based on Prototypical Networks by incorporating LaSO 

features, to augment the feature space for the Prototypical 

Network. This methodology focuses on detecting and classifying 

teacher and student voices for future understanding and analysis 

of classroom interactions. Experimental results indicate the 

proposed approach incorporating LaSO features significantly 

improves classification accuracy of a prototypical network used 

for few-shot learning. This work paves the way for more advanced 

and automated solutions in educational environments, facilitating 

better monitoring and understanding of classroom dynamics. 

 

I. INTRODUCTION 

A classroom environment is filled with various sounds that 

indicate the range of learning activities taking place. These 

sounds include teacher lectures, student questions, group 

discussions, and background noises. For education researchers, 

detecting patterns in these sounds can provide deeper insights 

into student learning dynamics. However, manually analyzing 

large volumes of recordings over extended periods can be 

impractical. Consequently, this study investigates an automated 

approach for classifying sounds in classroom audio recordings. 

Previous techniques for classifying classroom audio involve 

training neural networks using features extracted from labeled 

classroom sound recordings, as seen in [1, 2]. The DART 

method uses straightforward features based on sound power 

levels, similar to the neural network approaches in [1]. In 

contrast, time-frequency features such as the mel-spectrogram 

[2] are frequently used. The neural networks applied for 

classroom sound classification in [1, 2] include Deep Neural 

Networks (DNNs), Recurrent Neural Networks (RNNs), and 

RNN variants like Long-Short Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) networks. This classification falls 

within the broader field of environmental sound or scene 

classification[3, 4]. 

In the recent past , the author explored utilizing sound power 

level features derived from the Decibel Analysis for Research 

in Teaching (DART) algorithm [5] to classify classroom audio 

captured by their developed system [6]. Other scholars have 

examined different techniques for analyzing classroom audio 

as well. For example, a Multi-Scale Audio Spectrogram 

Transformer (MAST) was developed to detect interactions 

between teachers and students during classroom activities [7]. 

Nonetheless, this research mainly focused on verbal exchanges 

between teachers and students, neglecting other important 

classes essential for understanding significant learning 

activities. 

Environmental sound recognition aims to categorize 

different types of sound events within a recording. This 

fundamental task in machine listening has numerous practical 

applications, including smart cities [8, 9] and bioacoustics [10]. 

Although recent studies have made significant progress in 

recognizing sound events using extensive labeled datasets [11, 

12], these approaches often fall short in real-world situations. 

This is due to the substantial effort required to collect enough 

annotated data for each category during the inference stage.  

Recently, several studies have suggested employing few-shot 

learning for environmental sound classification [13-15]. These 

classifiers can quickly learn new acoustic patterns from a 

limited number of labeled examples, mainly because of their 

unique training objective. Nevertheless, they remain 

constrained to using ground truth as a binary attribute also they 

are not implemented on long audio streams. 

This study involves first extracting LaSO [16] features from 

audio samples using a pre-trained base model. These features 

are then used as input to a Prototypical Network, which is 

trained to classify sound events with minimal labeled examples 

by calculating distances further details in section II. We apply 

this framework to the domain of classroom interaction 
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detection, focusing on identifying specific interactions and 

sounds within a classroom setting yield an even better 

understanding of classroom. The contribution of the study 

described in three parts: 

i. We utilized scalogram audio features to train the few-

shot learning model 

ii. Extracted LaSO features from audio samples using a 

pre-trained based model 

iii. LaSO features are then incorporated in prototypical 

network to generate protypes and classify long 

classroom audio. 

Section II outlines the related work on few shot sound 

classification and prototypical network. Section III 

encompasses an in-depth methodology. Section IV describes 

the experimental setup and data collection method. Section V 

discussed the results and detailed analysis of the and the 

performance comparisons across different models. 

II. RELATED WORK 

The issue of few-shot learning has garnered significant 

interest in the computer vision field as well as sound 

classification recently. In the Meta-Learning, or learning-to-

learn, approach [17-20], models are trained on instances of few-

shot learning tasks instead of individual labeled samples. 

A. Few shot Sound Categorization 

There are several studies that apply few-shot learning to 

everyday sound recognition [13, 15, 19, 21, 22]. Heggan et al. 

experimented with various few-shot algorithms on everyday 

sound datasets for single-label classification [15]. Wang et al. 

addressed the multi-label few-shot problem by creating 

synthesized datasets, FSD-MIX-CLIPS and FSD-MIX-SED, 

and compared model performances by controlling generative 

factors in FSD-MIX-SED [13]. Cheng et al. adapted existing 

single-label few-shot algorithms to multi-label classification 

using a One-vs.-Rest strategy [22], and tested their methods on 

the AudioSet [23] dataset. Shi et al. applied meta-learning 

algorithms and linear regression on AudioSet, finding that 

meta-learning outperformed other few-shot methods [19]. It is 

important to note that while both Cheng and Shi used AudioSet 

for their experiments, their results cannot be directly compared 

as AudioSet is not publicly released, and neither study detailed 

how the database was adapted for few-shot learning. 

B. Prototypical network 

A training set 𝐴 = {(𝑀𝑖 , 𝑂𝑖)}𝑖−1
𝐴 where 𝑀𝑖 represents the 

feature vector, 𝑂𝑖  𝜖 𝑂 signifies the discrete label of the i-th 

example, and 𝑂 is the label set comprising 𝑂 classes, 𝑂 =

{1, … . , 𝑂}. Prototypical networks are trained using a series of 

"N-way K-shot" classification tasks created from the training 

set 𝐴. 

In an "N-way K-shot" problem, the classification task 

consists of three components: (a) a subset 𝑂𝑠  of 𝑁  classes 

sampled from the set 𝑂, (b) 𝐺 examples (support examples) 

drawn from 𝐴  for each class in 𝑂𝑠 , and (c) 𝑃  examples 

(query examples) also drawn from 𝐴 for each class in 𝑂𝑠. For 

any class 𝑛 ∈ 𝑂𝑠, let Sn be the set of support examples for that 

class, with |𝑆𝑛| = 𝐺 . The prototype 𝑏𝑛  (1) for class 𝑛 is 

calculated as the mean of the embedding vectors of the support 

examples in 𝑆𝑛. Formally: 

𝑏𝑛 =
1

𝐺
∑ 𝑔𝜙(𝑀)

(𝑀,𝑂)∈𝑆𝑛

 (1) 

 

where 𝑔  denotes the embedding mapping realized by the 

model whose parameters are denoted collectively as 𝜙. 

For a given query example 𝑀𝑝 , the model classifies by 

generating a probability distribution over 𝑁  classes in 

𝑂𝑠 using a softmax function applied to the distances between 

𝑀𝑝 and the 𝑁 prototypes within the embedding space. 

Specifically, the likelihood that 𝑀𝑝 belongs to class 𝑛 ∈ 𝑂𝑠 

is computed as follows (2): 

𝑟𝜙(�̂�𝑝 = 𝑛|𝑀𝑝) =
exp (−𝑎 (𝑔𝜙(𝑀𝑝), 𝑏𝑛))

∑ exp (−𝑎 (𝑔𝜙(𝑀𝑝), 𝑏𝑙))𝑙𝜖𝑂𝑠

 (2) 

 

Where �̂�𝑝 represents the predicted label for𝑀𝑝, and 𝑎 is a 

distance metric, such as ℓ2 or cosine distance. The network is 

optimized to reduce the negative log-probability of the correct 

class across the 𝑁 × 𝑃 query examples in (3): 

Γ(𝜙) = ∑ −𝑙𝑜𝑔𝑟𝜙(�̂� = 𝑂|𝑀)
(𝑀,𝑂)𝜖𝑃

 (3) 

 

where 𝑃 is the set of query examples, |𝑃| = 𝑁 × 𝑃. 

While prototypical networks excel in various applications 

[24, 25], they are not directly applicable to multi-label few-shot 

classification. This is because formulating "N-way K-shot" 

problems becomes challenging when labels frequently co-

occur in a multi-label context. 

III. PROPOSED METHOD 

This study presents an innovative method for few-shot sound 

classification, focusing on scalogram spectral utilization for 

detecting classroom interactions by combining Label Set 

Operation (LaSO) features with Prototypical Networks. 

Scalogram features extracted from the raw audio files and used 

as input to the label set operation features where a pretrained 

model utilized and backbone of the feature extraction. 

A. Scalogram conversion 

A scalogram, (4) similar to a spectrogram, is formed from 

the absolute values of the Continuous Wavelet Transform 

(CWT) coefficients across time and scale in a two-dimensional 

format [23]. This representation has proven to be more effective 

than other time-frequency features in neural network-based 

audio classification [17]. 
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𝐶𝑊𝑇𝑐(𝑠, 𝑡) =  ∫ 𝑥(𝑢)
1

√𝑠
𝜓∗ (

𝑢 − 𝑡

𝑠
) 𝑑𝑢

∞

−∞

 (4) 

In this context (1), 𝑥(𝑢) is the input signal, is 𝑠 the scale 

parameter, which is related to frequency, 𝜓∗ is the conjugate 

of the mother wavelet, 𝑡 is the translation parameter that shifts 

the wavelet function along the time axis, and 𝑢 denotes the 

segment of the signal. 

B. Label Set Operation (LaSO) 

The method is schematically depicted in Fig. 1 The input 

scalograms images 𝑈 and 𝑉 , each associated with a 

corresponding set of multiple labels 𝐿(𝑈)  and 𝐿(𝑉) , 

respectively, are mapped into the joint feature space ℋ as 𝐻𝑈 

and 𝐻𝑉 . This feature space ℋ  is implemented using a 

backbone feature extraction network ℬ; for our experiments, 

we utilized InceptionV3[26] and ResNet-50 [27] backbones. 

Three LaSO networks, named 𝑇𝑖𝑛𝑡 , 𝑇𝑢𝑛𝑖 , and 𝑇𝑠𝑢𝑏 , process 

the concatenated 𝐻𝑈 and 𝐻𝑉 to generate synthesized feature 

vectors within the same feature space ℋ. As indicated by its 

name 𝑖𝑛𝑡 = 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑇𝑖𝑛𝑡 aims to synthesize a feature 

vector in (5). 

𝑇𝑖𝑛𝑡(𝐻𝑈 , 𝐻𝑉) = 𝑊𝑖𝑛𝑡𝜖 ℋ (5) 

This corresponds to a theoretical scalogram image 𝐸  for 

which 𝛽(𝐸) = 𝑊𝑖𝑛𝑡  and 𝐿(𝐸) = 𝐿(𝑈) ∩ 𝐿(𝑉) . Essentially, 

this means that if a human were to observe and label I, the label 

set would be 𝐿(𝑈) ∩ 𝐿(𝑉) . Similarly, 𝑇𝑢𝑛𝑖  and 𝑇𝑠𝑢𝑏  

generate outputs 𝑊𝑢𝑛𝑖  and 𝑊𝑠𝑢𝑏  in ℋ , which are 

anticipated to correspond to the union of the label sets 𝐿(𝑈) ∪

𝐿(𝑉)  and the subtraction of the label sets 𝐿(𝑈) ∪ 𝐿(𝑉) , 

respectively [16]. 

C. LaSO based Prototypical network 

InceptionV3 is used as the base model, pre-trained on 

ImageNet. Then we exclude the final classification layer. The 

global average pooling layer converts the feature maps from the 

base model to a fixed-size vector by taking the average of each 

feature map. The pooled feature vectors the fed into LaSO 

networks are designed to learn features based on the 

intersection (𝑇𝑖𝑛𝑡), union (𝑇𝑢𝑛𝑖), and subtraction (𝑇𝑠𝑢𝑏) of label 

sets. Scalogram spectral images are concatenated then passed 

through multiple dense layers with ReLU activation and 

dropout layers. 

For each pair of support and query features, we apply the 

LaSO 𝑇𝑖𝑛𝑡 , 𝑇𝑢𝑛𝑖 , 𝑇𝑠𝑢𝑏  networks to compute intermediate, 

universal, and subset-specific feature in (6-8): 

 

𝑊𝑖𝑛𝑡 = 𝑇𝑖𝑛𝑡(𝐻𝑢 , 𝐻𝑣) (6) 

𝑊𝑢𝑛𝑖 = 𝑇𝑢𝑛𝑖(𝐻𝑢 , 𝐻𝑣) (7) 

𝑊𝑠𝑢𝑏 = 𝑇𝑠𝑢𝑏(𝐻𝑢 , 𝐻𝑣) (8) 

Where 𝑊𝑖𝑛𝑡, 𝑊𝑢𝑛𝑖 , 𝑊𝑠𝑢𝑏 ϵ ℝ𝑘 . 

Then Concatenated the LaSO features to form a combined 

feature vector (9): 

𝑊 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑊𝑖𝑛𝑡 , 𝑊𝑢𝑛𝑖, 𝑊𝑠𝑢𝑏) ∈ ℝ3𝑘 (9) 

In each episode of a prototypical network, we have a support 

set 𝐺  and a query set 𝑃 . For 𝑁 -way 𝐾 -shot learning, 𝐺 

contains 𝑁  classes with 𝐾  examples per class, and 𝑃 

contains query examples. 

The prototype 𝑏𝑛 (10) for each class 𝑛  is found as the 

mean of its support examples 

𝑏𝑛 =
1

𝐾
∑ 𝑊𝑖

𝑛

𝐾

𝑖=1

 (10) 

Where 𝑊𝑖
𝑛 represents the combined LaSO feature for the 

𝑖-th support examples of class 𝑛. Distance (11) between the 

query example 𝑊𝑃 and each class prototype 𝑏𝑛: 

𝑎(𝑊𝑝, 𝑏𝑛) = ‖𝑊𝑝 − 𝑏𝑛‖
2

2
 (11) 

Then assign the query example 𝑊𝑝  to the class with the 

nearest prototype �̂�𝑝 in (12): 

�̂�𝑝 = arg 𝑚𝑖𝑛𝑚 𝑎(𝑊𝑝 , 𝑏𝑛) (12) 

 

IV. EXPERIMENTAL SETUP 

We employed prototypical networks for our study. The 

proposed LaSO based ProtoNet models were trained using 3-

way classification tasks to align with the evaluation scenario, 

where only 3 classes (Teacher, Student, Anomalous sound) are 

considered. We excluded irrelevant labels for classes and were 

not included in the "N-way K-shot" setup. 

The audio in a ninth-grade science classroom at an urban 

Australian high school was captured. This study, which extends 

a previous project, received approval from the University of 

Sydney's ethics committee and the New South Wales (NSW) 

Department of Education. Consent was obtained from the 

students, their parents, and the teacher. The classroom followed 

a Bring Your Own Device (BYOD) policy, using Microsoft 

OneNote for learning and note-taking. It was equipped with 

four cameras and audio recorders. The class consisted of 25 

Fig. 1 LaSo based prototypical network process flow 
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students and one teacher, meeting for 80 minutes four times a 

week. 

In all experiments, audio recordings were sampled at 16 kHz, 

and the input was the Scalogram. The scalograms were 

generated from audio recordings using a 5 s window length. We 

applied inception V3 feature extractor for the audio then 

constructed LaSO based prototypical network and validated 

with validation set. Additionally, the network was tested on a 

long audio stream to evaluate the real-world implementation. 

V. RESULTS AND ANALYSIS 

This section presents results from classifying classroom sounds 

using prototypical networks for an initial training and test 

database and for a separate unseen test database. Results are 

also presented when training these networks for classifying 

environmental sounds using two alternative well-known 

environmental sound databases (ESC [28] and Urban Sound 

[29]).  

A. Training and initial Testing Performance 

A database of 40 example audio segments across all 3 classes 

(13 teacher, 13 student and 14 anamolous classes) was prepared. 

From this database, a training set of 21 examples was selected 

and training is performed by randomly selecting 1 example of 

each class from this database, with the remaining 18 examples 

(6 per class) used for validation. This was repeated 3 times 

using a different example for each class each time (hence, three 

different models were trained). A separate test database was 

formed from the remaining 19 examples.  

The validation accuracy in table 2 Table 2 shows the 

validation accuracy for one of the trained models (similar 

results were achieved for the other two models). The 

LaSO+Prototypical Network consistently outperforms the 

Prototypical Network across all scenarios. In the 3-way 1-shot 

setting, it achieves a validation accuracy of 62.05%, which is 

significantly higher than the Prototypical Network's 

performance. This trend continues with 82.90% accuracy in the 

3-way 3-shot scenario and 95.95% in the 3-way 5-shot scenario. 

The LaSO+Prototypical Network's superior performance can 

be attributed to the integration of LaSO features, which 

enhances the model's ability to capture and utilize important 

relational and contextual information within the data. 

Table 1. Validation accuracy of the trained model 

Model 3-way 1-shot 3-way 3-shot 3-way 5-shot 

Prototypical net 54.45% 74.18% 87.75% 

LaSO+Prototy

pical net 

62.05% 82.90% 95.95% 

 

Table 2 shows the average results for the test dataset across 

all 3 models. The Prototypical Network shows reasonable 

performance, with accuracy improving from 55.35% in the 1-

shot scenario to 88.75% in the 5-shot scenario. However, the 

LaSO+Prototypical Network significantly outperforms the 

Prototypical Network alone in all scenarios, achieving 63.65%, 

84.60%, and 99.55% accuracy in the 1-shot, 3-shot, and 5-shot 

settings. 

Table 2. Test accuracy of the proposed model 

Model 3-way 1-shot 3-way 3-shot 3-way 5-shot 

Prototypical 

net 

55.35% 75.18% 88.75% 

LaSO+Prot

otypical net 

63.65% 84.60% 99.55% 

 

Table 3 shows average results using different performance 

measures across the 3 models when used to classify the test set. 

The LaSO Prototypical Network across different few-shot 

learning scenarios exhibit a notable performance. For the 3-way 

1-shot scenario, the mean Average Precision (mAP) is 62.05%, 

with precision at 62.00%, recall at 61.89%, and an F1 score of 

60.05%. As the number of shots increases, the model's 

performance improves significantly. In the 3-way 3-shot 

scenario, the mAP rises to 82.90%, precision to 82.10%, recall 

to 81.50%, and the F1 score to 82.90%. The 3-way 5-shot 

scenario shows the highest performance with a mAP of 95.76%, 

precision at 95.50%, recall at 95.23%, and an F1 score of 

95.50%. These results highlight the LaSO Prototypical 

Network's strong capability to learn and generalize from 

limited data, with consistent improvements in precision, recall, 

and F1 score as more examples per class are provided. 

Table 1. Various accuracy matrices of the proposed model 

Model 3-way 1-shot 3-way 3-shot 3-way 5-shot 

mAP 62.05% 82.00% 95.76% 

precision 62.00% 82.10% 95.50% 

Recall 61.89% 81.50% 95.23% 

F1 Score 62.05 82.90% 95.50% 

 

B. Results from evaluation on a second test database 

A second test database was formed from the classroom audio 

recordings and consisting of 40 examples (13 teacher, 13 

student, and 14 anomalous examples). Table 4 shows the 

accuracy results for this test database.  

Table 2. Testing results on unseen data 

Model 3-way 1-shot 3-way 3-shot 3-way 5-shot 

Prototypical 

net 

25.35% 61.25% 70.75% 

LaSO+Protot

ypical net 

60.65% 80.60% 95.00% 

The Prototypical Network achieved an accuracy of 25.35%, 

while the combined model significantly outperformed it with 

60.65%. In the 3-way 3-shot scenario, with three examples per 

class, the Prototypical Network's accuracy improved to 61.25%, 

but the combined model still showed superior performance 
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with 80.60%. Finally, in the 3-way 5-shot scenario, which 

involves five classes with five examples per class, the 

Prototypical Network reached 70.75% accuracy, whereas the 

LaSO+Prototypical Network achieved a notably higher 

accuracy of 95.00%. 

As an example, Fig. 3 shows a 1-minute portion of the 

recorded classroom sounds with labeled sound class segments. 

The first image shows the predicted labels: '1 (Student)', '2 

(Teacher)', and '3 (Anomalous Sound)', while the second image 

shows the ground truth graph with corresponding Letters: 'S 

(Student)', 'T (Teacher)', and 'A (Anomalous Sound)'. 

 

 

Fig 3. Testing and ground truth plot on long audio stream 

 

There are a total of 36 instances which includes 27 Teachers, 

5 anomalous sound and 4 students in the ground truth. While 

tested through our proposed model, the prediction shows that 

24 instances are predicted as Teacher, the Student segment is 

predicted correctly, and anomalous sound predicted 4 times 

where actual ground truth is 5 and anomalous sound predicted 

3 times over 4. 

C. Testing over ESC and Urban Sound dataset 

The proposed LaSO+Prototypical models trained on 

scalograms was further evaluated using two existing sound 

datasets, ESC [28] and Urban Sound [29], and three chosen 

classes from each database. The classes considered for ESC are 

Rain; Rooster; and person sneezing while for the Urban Sound 

dataset are: Gunshot; Dog Barking; and Siren. From each 

database, a set of 40 examples across all classes was created. 

Training proceeded using one randomly selected example for 

each class, leaving 37 examples that were used for testing (12 

examples each for the first two classes and 13 examples for the 

third class). Accuracy results are shown in Table 5, including 

results for the classroom dataset using the LaSO+Prototypical 

model shown in Table 4. 

Table 3. Testing the Proposed model on ESC and US dataset 

Model 3-way1-shot 3-way 3-shot 3-way 5-shot 

ESC 52.45% 72.18% 79.75% 

Urban sound 56.05% 82.90% 92.95% 

Classroom  60.65% 80.60% 95.00% 

 

In the 3-way 1-shot scenario, where the model classifies 

among three classes with only one example per class, it 

achieved 52.45% accuracy on the ESC dataset, 56.05% on the 

Urban Sound dataset, and 60.65% on the classroom dataset. In 

the 3-way 3-shot scenario, with three examples per class, the 

model's performance improved, reaching 72.18% accuracy on 

the ESC dataset, 82.90% on the Urban Sound dataset, and 

80.60% on the classroom dataset. In the 3-way 5-shot scenario, 

with five examples per class, the model achieved 79.75% 

accuracy on the ESC dataset, 92.95% on the Urban Sound 

dataset, and the highest accuracy of 95.00% on the classroom 

dataset 

VI. CONCLUSION 

This study presents an innovative approach for few-shot 

sound classification by leveraging scalogram spectral features 

to detect classroom interactions, combined with Label Set 

Operation (LaSO) features and Prototypical Networks. By 

converting raw audio files into scalograms and using these 

features as inputs for LaSO-based feature extraction, the study 

demonstrates the efficacy of scalograms over other time-

frequency features in neural network-based audio classification. 

Experimental results reveal that the LaSO-enhanced 

Prototypical Network significantly outperforms the traditional 

Prototypical Network across various few-shot learning 

scenarios, achieving higher accuracy, mean Average Precision 

(mAP), precision, recall, and F1 scores. Specifically, the 

LaSO+Prototypical Network showed substantial improvements 

in 1-shot, 3-shot, and 5-shot settings. Validation and testing on 

a separate test dataset as well as two publicly available sound 

class datasets further confirmed the model's effectiveness. This 

approach demonstrates a robust capability to generalize from 

limited data, making it a valuable method for sound 

classification in educational settings and other domains 

requiring precise classification from minimal data. 
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