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Abstract—Long document summarization poses a significant
challenge in natural language processing due to input lengths
that exceed the capacity of most state-of-the-art pre-trained
language models. This study proposes a hierarchical framework
that segments and condenses information from long documents,
subsequently fine-tuning the processed text with an abstractive
summarization model. Unsupervised topic segmentation methods
identify semantically appropriate breakpoints. The condensation
stage utilizes an unsupervised generation model to generate
condensed data, and our current experiments employ ChatGPT
(v3.5). The summarization stage fine-tunes the abstractive sum-
marization model on the condensed data to generate the final
results. This framework enables long documents to be processed
on models even when the document length exceeds the model’s
maximum input size. The exclusion of the entire document from
the summarization model reduces the time and computational
resources required for training, making the framework suitable
for contexts with constrained local computational resources.

I. INTRODUCTION

Current summarization tasks are predominantly classified
into extractive and abstractive summarization. Extractive sum-
marization treats the task as a classification problem, determin-
ing which sentences in the article should be included in the
summary. This method ensures that the summary accurately
reflects the original article’s meaning, preventing misinter-
pretations and potential hallucinations (factually incorrect or
nonsensical content generated by language models). However,
the direct extraction of summary content from the original
text may hinder readability and present challenges in attaining
high similarity scores compared to human-written labels during
performance evaluation.

Abstractive summarization, on the other hand, employs
language generation models to create summary content based
on the input text. This approach often yields summaries that
are more coherent and closely align with human-written labels.
Nevertheless, the main challenges include achieving model
convergence and preventing the generation of hallucinations
or inaccuracies.

For longer text inputs, many studies utilize graph-based
models to handle the summarization task [1]–[4]. By construct-
ing graphs to represent the relationships between sentences,
these models allow sentences that are relatively distant from
each other in the text to influence one another. This approach
mitigates the adverse effects of distance on summary content.
During training, these models necessitate substantial VRAM,

and as the input document length increases, the demand for
computational resources becomes even more stringent.

A further challenge in summarizing lengthy documents
occurs when the article length surpasses the model’s input
capacity, rendering effective model training impossible. Cer-
tain studies [5] tackle this issue through text segmentation
techniques that partition articles into smaller, manageable
segments. [6] employs a sliding window to encapsulate infor-
mation throughout the document. Unlimiformer [7] modifies
the Transformer architecture to accommodate longer input
sequences.

We propose an architecture for preprocessing long articles,
facilitating their training within commonly used language
models. Prior research GoSum [8] indicates that segmentation
is crucial for effective summarization. Extracting structural
information from text enhances summary quality. Thus, our
approach segments lengthy articles to prevent semantic dis-
continuity during text division, thereby ensuring quality of the
summary. We utilizes the unsupervised segmentation method
outlined in [9] for this architecture. This approach employs the
TextTiling algorithm [10] and utilizes BERT embeddings to
compute similarity, resulting in segmentation outcomes. Next,
we employ zero-shot prompting with a large language model
to condense the segmented text, allowing applicability to any
dataset irrespective of golden labels. Subsequently, we fine-
tune a Transformer-based abstractive summarization model
to generate the final summary. The preceding segmentation
and condensation steps facilitate processing and training with
established summarization models.

The advantage of this architecture is that it enables efficient
summarization of lengthy articles with reduced computational
resources. When paired with prompts, this architecture yields
superior outcomes on the ForeverDreaming dataset [11] .
Furthermore, tailored prompts can be utilized based on the
dataset and domain to enhance summary quality during the
condensation stage.

II. RELATED WORKS

A. Unsupervised Topic Segmentation

The method outlined in [10] is widely employed for topic
segmentation, identifying segment boundaries through shifts
in word distribution. The process involves tokenization, de-
termining lexical scores, and identifying boundaries to de-
lineate topical segments. Building on this method, [9] uti-



lized BERT embeddings for sentence representation, achieving
improved topic segmentation scores through incorporating
BERT’s strong semantic representation. Other studies focus
on developing superior scoring models for unsupervised topic
segmentation. For instance, [12] aims to enhance coherence
scoring by training on diverse utterance pairs and defining
relative scores. Additionally, [13] computes relevance scores
by integrating topic similarity and coherence scores generated
by trained topic and coherence encoders.

B. Dialogue Summarization

Dialogue summarization is an essential task that includes
data types such as meetings, lectures, conversations, and
scripts. The goal is to extract semantic information from
dialogue content and succinctly present the key points.

DialogLM [14] proposed a pre-training framework featuring
a window-based denoising approach that incorporates speaker
masking, turn splitting and merging, text infilling, and turn
permutation of the original dialogue. This framework enhances
the model’s comprehension of dialogue. Furthermore, they im-
plemented Sinkhorn attention [15] in specific Transformer lay-
ers, enhancing local and global information interaction, thereby
improving the model’s suitability for long dialogue data. The
framework is applied to UniLMv2 [16] and Longformer-
Encoder-Decoder [6] in the study.

[17] proposes self-supervised methods that are similar yet
distinct from DialogLM [14] for training a summarization
model. For an input dialogue, interlocutors and utterances are
alternated, with irrelevant utterances from other dialogues in-
corporated into the original dialogue. In the context of masking
interlocutors, only the reference summary is utilized. A pre-
trained BERT [18] is fine-tuned to detect modifications in the
original dialogue. The weights are then shared to initialize a
traditional encoder-decoder model, which is subsequently fine-
tuned on an abstractive summarization task.

Some studies concentrate on augmenting the summariza-
tion task with supplementary information. In dialogues, the
speaker’s intentions are often implicit, posing challenges for
models to fully comprehend the content. Thus, [19] suggests
integrating commonsense knowledge to enhance the model’s
dialogue summarization. The presented framework utilizes
commonsense knowledge model COMET [20] and PARA-
COMET [21] to augment the input dialogue with additional
knowledge. This augmented input is then fine-tuned using a
pre-trained BART [22] model.

[23] proposes fusing static graphs representing dialogue
discourse relations, keyword co-occurrences, speaker relations,
and utterance positions. The static graphs are integrated with a
dynamic graph created via a multi-head attention mechanism.
This fused graph is used to generate summaries. This approach
integrates both static information and the dynamic information
potentially absent in static graphs.

C. Long Document Summarization

In long document summarization, two primary challenges
are the document’s input length exceeding the model’s limit

and the difficulty of capturing its structured information.
[24] addresses this issue by altering the cross-attention

computation in Transformer architectures to enable unlimited
input. Input data are encoded in chunks and stored in an index
in GPU or CPU memory. In each cross-attention computation,
the k-nearest neighbors of the query are selected from the index
for inclusion in the computation. This approach guarantees the
availability of each input sequence chunk for cross-attention
computation.

In contrast to [25], which constructs a heterogeneous graph
using word and sentence nodes, GoSum [8] builds the graph
with sentence and section nodes, utilizing a reinforcement
learning-based extractive summarization model. In this struc-
ture, sentence nodes connect to their respective section nodes,
with both sentences and sections fully interconnected. This
configuration conveys hierarchical semantic information and
mitigates semantic drift across sections. Eliminating word
nodes reduces the model’s runtime and enhances the structural
representation of lengthy documents.

[24] introduced a hierarchical propagation layer to facilitate
information dissemination across multiple Transformer win-
dows. The input data is segmented into multiple blocks and
tokenized. The propagation layer initiates with a Transformer,
subsequently processing the CLS token of each block through
a BIGRU network to aggregate semantic information across
blocks. This architecture enables BERT to handle input data
exceeding its maximum size while retaining information from
the entire document via updates to the CLS representation.

The study [26] introduces three methods for long document
summarization: ’Direct’, ’Chunk and Summarize’, and ’Extract
then Summarize’. The Direct approach omits input data pre-
processing, with automatic truncation to the model’s maximum
token limit. The ’Chunk and Summarize’ approach segments
the input document at the maximum token limit, processes each
segment independently, and merges the resulting summaries.
Another variant entails inputting the generated summary with
the subsequent segment into the model. The Extract then Sum-
marize approach generates sentence embeddings for dialogues
and summaries, subsequently calculating cosine similarity. A
similarity threshold is established to exclude sentences with
low similarity. Ultimately, the extracted dialogues are input
into the models to generate summaries. The experiment uti-
lized several state-of-the-art summarization models, including
Longformer [6], T5 [27], Flan T5 [28], BART [22], and Chat-
GPT, and was evaluated on datasets such as Qmsum [25] and
ForeverDreaming [11]. Since we are utilizing ForeverDream-
ing [11] in our evaluation experiments, its results provide
baseline comparisons.

III. PROPOSED FRAMEWORK

We propose a hierarchical framework for document summa-
rization that involves multiple stages. First, the input document
is divided into segments based on semantic information. These
segments are then condensed using zero-shot prompting to
generate a first-stage summary. Next, each first-stage summary
is concatenated with k utterances extracted from the original
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Fig. 1. Workflow of the proposed framework.

input. Finally, the processed data is fine-tuned using an ab-
stractive summarization model to produce the final summary.

A. Topic Segmentation

A single input document consists of n utterances X =
{u1, u2, ..., un}. We aim to determine the semantic breakpoints
in the document for data splitting. Let semantic breakpoint
sbj be the index of last utterance in the jth segment, then we
will have segment index set SEG = {sb1, sb2, ..., sbl}, with
l segments . We referenced the approach proposed in [9] and
adjusted it according to our requirements and experimental
results. Unlike [9], our approach does not apply the block-
wise max pooling operation. Instead, a sliding window method
is used for BERT embedding calculation. Specifically, the
embedding of ith utterances ebi is calculated by concatenating
the previous and next utterances:

ebi = tokenizer(ui−1 ⊕ ui ⊕ ui+1)

simi = cos(ebi · ebi+1)

where cos(·) denotes cosine similarity function and simi

denotes the cosine similarity between the BERT embeddings
of the utterances ui and ui+1.

[9]’s work specifies the semantic breakpoint to be deter-
mined by every simi such that:

simi < µS − σS

where µS , σS is the mean and variance of all cosine similarities
S = {sim1, sin2, ...simn}. This method resulted in too
many semantic breakpoints when the variance was too small,
leading to excessive segmentation and loss of meaningful
context. Therefore, we adopted a greedy approach for selecting
semantic breakpoints that is more-suitable for our experiment.
The steps are as follows: 1. Separate the utterance with the
least cosine similarity as a semantic breakpoint. 2. Protect the
nearby w utterances from segmentation. 3. Repeat steps 1 and
2 until the specified number of segments l is reached or no
suitable breakpoint can be found.

w and l are customizable parameters. By protecting adjacent
sentences from being split and allowing for an adjustable

number of segments, the algorithm can better adapt to various
scenarios.

B. Data Splitting

To accommodate the maximum input size of the summariza-
tion model, we perform a data split based on the results of topic
segmentation, ensuring that semantic meaning is preserved.
The pseudo segment size M is determined by the model’s
maximum input capacity. Starting from every M utterances
in the input text, we locate the nearest semantic breakpoint.
This process is conducted backwards to ensure that the length
of each segment does not exceed M utterances. The ith data
split denotes xi = {usbj+1, usbj+2, ..., usbk}, where j and k
are some index in segment index set such that the length of
utterances in segment j + 1 to k is not greater than M . After
data splitting, the input document X = {x1 ∩ x2 ∩ ... ∩ xm}
consists of m splits.

C. Condensation Stage

Performing summarization tasks using zero-shot prompting
with ChatGPT may result in summaries presented from differ-
ent perspectives or overly vague summaries (see the analysis
section). Consequently, the generated summaries can deviate
from the golden labels. By combining the first-stage summary
with the event list method, our model can separately generate
text with a summarization structure and neutral perspective
descriptions. This approach allows the model in the summa-
rization stage to obtain more comprehensive information. We
use ChatGPT (v3.5) to generate the first-stage summary of the
input document, ensuring that its length meets the input length
requirements of the BART model. The first-stage summary
generation process is as follows:

fi = LLM(xi, ps)

F = f1 ⊕ f2 ⊕ ...⊕ fm

where fi is the first-stage summary of xi , ps denotes the
prompt used to generate first-stage summary, and LLM() de-
notes the zero-shot prompting model. The generated results are
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concatenated to form the first-stage summary F corresponding
to input document X .

The event list generation process is as follows:

ei = LLM(xi, pe)

E = e1 ⊕ e2 ⊕ ...⊕ em

where ei is the event list of xi , pe denotes the prompt used
to generate event list, and E is the generated event list for X .

By generating the first-stage summary and event list, the in-
formation from the input document is condensed to a trainable
length suitable for summarization models like BART.

D. Summarization Stage

To further enrich the training data, we inject the first k ut-
terances of the original text into the training data. This ensures
that the content processed by the LLM remains closely aligned
with the original material, thereby enhancing summarization
performance. We define enhanced input data as:

X ′ = E ⊕ F ⊕ lead(k,X)

where lead(k,X) function extracts first k utterances from X .
Finally, we use the enhanced input data from the training set
to train a BART model. Let the golden summary be Y =
{y1, y2, ..., yk} , where yi is the ith utterance of Y . The model
minimizes the cross-entropy loss as follows:

L = −
T∑

t=1

logP (yt|y<t, X
′)

where yt is the actual token at position t, y<t represents
all tokens before position t, X ′ denotes the enhanced input
data. Note that the enhanced input is also applied during the
inference phase; the test set data will be processed in the same
manner to generate the result summary.

IV. EXPERIMENT

A. Dataset

We conducted experiments on the ForeverDreaming dataset,
which includes TV show transcripts paired with human-written
summaries. The dataset contains 4,348 dialogues, comprising
3,673 training samples, 338 validation samples, and 337 test
samples.

B. Baselines

We referenced the experimental data from the study [5],
ensuring that the experimental details are consistent. The
experiments were conducted on a randomly selected 15%
subset of the ForeverDreaming dataset. Several approaches
were presented, including ’Direct’, ’Chunk and Summarize’,
and ’Extract then Summarize’. For detailed methods, please
refer to the related works section. We present the result with
the best ROUGE-1 score under their experimental settings for
comparison. For the comprehensiveness of the baseline data,
we also referenced DialogLM’s results on the ForeverDream-
ing dataset. It is important to note that both our experimental

Summarization ROUGE-1 ROUGE-2 ROUGE-L
Our model 29.15 6.72 24.54
Baseline
BART 19.35 2.02 17.28

LongFormer 15.39 1.42 12.52
T5 18.57 1.48 17.62

ChatGPT 25.04 4.34 18.31
DialogLM-large 36.70 8.38 31.38

TABLE I
EXPERIMENT RESULTS AND BASELINE

results and those from DialogLM were obtained using the
complete ForeverDreaming dataset.

BART: BART is a state-of-the-art denoising sequence-to-
sequence pre-trained model, often used in natural language
generation and translation. The BART-2048 model with the
’Chunk and Summarize’ approach is used.

Longformer: Longformer replaces the standard self-
attention mechanism for long document input, making it
suitable for generative sequence-to-sequence tasks involving
long documents. The Longformer model with the ’Extract then
Summarize’ approach is used.

T5: The Text-to-Text Transfer Transformer (T5) converts
every language problem into a text-to-text format, commonly
used for summarization tasks. The T5-base-2048 model with
the ’Chunk and Summarize’ approach is used.

ChatGPT: ChatGPT is a conversational generation model
developed by OpenAI, based on the GPT-3 and GPT-4 ar-
chitectures. It is designed for natural language interactions
and provides high-quality exchanges in various application
scenarios. ChatGPT (V3.5) with the ’Direct’ approach is used.

DialogLM: DialogLM is a state-of-the-art pre-trained sum-
marization model that focuses on long dialogue. Its window-
based denoising method enables the model to gain a better
understanding of long documents.

C. Experimental Results

Our framework outperforms the results obtained by [5].
The ’Chunk and Summarize’ method is similar to ours in
that it adopts the idea of segmenting input data. However,
our approach extends further. By using an unsupervised topic
segmentation method, the data splitting aligns more closely
with the textual information. We then use the event list
generation method to further integrate the segmented data, and
finally, we fine-tune the summarization results using BART.
This approach allows us to achieve a difference of more than
9 points in ROUGE-1 score compared to ’BART’.

The ’ChatGPT’ result in the table does not use segmentation
and performs better compared to ’Summary Generation’ in
Table 3. This indicates that using segmentation with ChatGPT
may result in a lower summary score. ChatGPT achieves
the best results when the article is not segmented. However,
by employing event list generation and fine-tuning, we can
achieve scores that surpass those of ChatGPT summarization.

DialogLM achieves better ROUGE scores in the Forever-
Dreaming summarization task. The primary reason is the
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REFERENCES REFERENCES

Methods ROUGE-1 ROUGE-2 ROUGE-L
Event List Generation 22.47 3.39 19.69

First Stage Summarization 21.99 3.11 19.43
ChatGPT Second Stage Summarization 20.52 2.87 17.67

BART Second Stage Summarization 27.27 5.33 22.90

TABLE II
COMPARISON OF CHATGPT SUMMARIZATION

approach utilizes the full text of long documents and involves a
relatively long pre-training process. The complete information
is fed to the model instead of condensed text, requiring signif-
icant computational resources and training times. In contrast,
our method requires fewer computational resources to achieve
comparable results, making long document summarization
feasible for computers with less VRAM.

V. ANALYSIS

A. ChatGPT Summarization

To assess the impact of different prompts on summary
content, we conducted further analysis on results generated
by the LLM during the zero-shot prompting data condensation
stage. The result is presented in Table II. The ’Event List Gen-
eration’ and ’First-Stage Summary’ rows indicate the ROUGE
scores of the concatenated event list E and the first-stage
summary F compared to the golden label. The ’Second Stage
Summarization’ rows represent the further summarization of
the concatenated first-stage summary.

The results for event list summarization marginally surpass
those for direct text summarization. This discrepancy arises
from the ’summarizing’ prompt potentially producing vague
or subjective summaries. Modifying the prompt to ”event list”
yields a text comprised of objective descriptions of the events,
thereby more accurately reflecting the article’s content.

The effects of ChatGPT summarization are evident in the
’First Stage Summarization’ and ’ChatGPT Second Stage
Summarization’ rows. The same prompts were used to generate
both results. The ROUGE score decreased with multi-stage
zero-shot prompting summarization, indicating that while this
method can be used to condense and shorten the original
document, the information loss issue remains unsloved.

The results from the ’BART Second Stage Summarization’
indicate that fine-tuning substantially enhances the ROUGE
score, justifying our selection of BART as the final summa-
rization model. Moreover, integrating ’Event List Generation’
and ’First Stage Summarization’ as inputs enables the model
to capture the summarization structure and neutral descriptions
of the original documents, thereby enhancing outcomes.

B. Lead-k Injection

The Lead-k Injection method also helps the model gain a
better understanding of the original document, mitigating infor-
mation loss during data preprocessing. To further understand
the effects of Lead-k Injection, we tested how different values
of k for injection affect the ROUGE score. Lead-0 indicates
no injections, meaning the model is trained on the event list

Methods ROUGE-1 ROUGE-2 ROUGE-L
Lead-0 28.96 6.58 24.40
Lead-1 29.02 6.59 24.45
Lead-3 28.38 6.32 23.80
Lead-5 29.15 6.73 24.54
Lead-10 28.97 6.72 24.55

TABLE III
COMPIRSION OF LEAD-k INJECTION

Model ROUGE-1 ROUGE-2 ROUGE-L
Pegasus 25.57 5.20 21.59
BART 28.96 6.58 24.40

TABLE IV
COMPIRSION FOR DIFFERENT SUMMARIZATION MODEL

only. The table shows that Lead-k Injection enriches the input
text, resulting in a better ROUGE score. However, excessively
increasing k may lead to a loss of focus during the training
phase, thereby decreasing model performance.

C. Summarization Model

In the Sammarization Stage, different summarization models
can be applied to the framework. Experiments were conducted
using both Pegasus and BART for comparison. Note that the
presented results are generated with Lead-0 (no utterances
injected), as the optimal k may vary for each model. The
results show that BART outperforms Pegasus by approximately
6 points in ROUGE-1 score, indicating that BART is the
superior model for our task.

VI. CONCLUSION

The proposed framework effectively summarizes long docu-
ments with low computational cost. Despite the data condensa-
tion process shortening the original document, some essential
information may be lost. Currently, we use a naive solution that
injects the first k utterances into the abstractive summarization
model input. This method can be enhanced by employing
ROUGE-based selection for the injected segment or by fine-
tuning an extractive summarization model to identify and
preserve key information from the original document. Summa-
rizing long documents, such as those in the ForeverDreaming
dataset, using common Transformer-based models, demands
significant VRAM and extensive training time. Despite the
additional costs of using the ChatGPT API, the framework
is viable for scenarios lacking local computational resources.
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