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Abstract— Years of scholarly efforts have led to extensive studies 
on end-to-end automatic speech recognition (E2E ASR), now 
demonstrating robust performance in everyday applications such 
as voice assistants, transcription services, and many others. How-
ever, E2E ASR struggles to recognize domain-specific phrases, 
such as keywords or name entities. To address this, contextualized 
ASR (CASR) has been developed to improve keyword recognition 
accuracy by incorporating specific contextual information, repre-
sented by a keyword list, into the ASR model. Despite their effec-
tiveness, CASR systems still fall short in distinguishing between 
keywords with similar sounds, as well as generalizing to uncom-
mon keyword pronunciations. Previous studies have focused pri-
marily on enriching keyword representations by integrating key-
word phoneme features derived from a simple sequence encoder 
with keyword grapheme features to overcome these obstacles. 
However, such phoneme representations are insufficient, as hu-
man pronunciation varies in different contexts, involving phenom-
ena like linking and variations. In this paper, we argue that inte-
gration of more fine-grained phoneme features instrumental to ac-
curate keyword recognition in CASR. To this end, we propose lev-
eraging a self-supervised learning (SSL) phoneme encoder to pro-
vide more subtle phonemic details of keywords, effectively ad-
dressing these variations and alleviating the phonetic confusion 
between keywords. A series of experiments conducted on the 
SlideSpeech benchmark dataset demonstrates the effectiveness of 
our approach in alleviating keyword phonemic confusion and en-
hancing out-of-domain keyword recognition. 

I. INTRODUCTION 

End-to-end (E2E) automatic speech recognition (ASR) [1] has 
garnered significant interest from both research communities 
and industrial applications in recent years due to its streamlined 
design and scalability compared to conventional hybrid DNN-
HMM models. Although E2E ASR models demonstrate im-
pressive recognition abilities for common words, they struggle 
with rare words, including keywords like personal names [2]. 

This difficulty arises from the imbalance of word distributions 
in the training set. Accurate keyword recognition is crucial for 
downstream tasks like natural language processing, making the 
improvement of keyword recognition accuracy essential for ad-
vancing E2E ASR models in real-world applications.  

In contrast to machines, humans, with their rich sensory in-
puts, can easily recognize unfamiliar phrases by leveraging var-
ious clues from multiple modalities such as visual cues, body 
language, and environmental sounds. This ability enables them 
to adapt swiftly to different scenarios, including keynote 
speeches, financial discussions, and medical consultations. 
However, E2E ASR models rely solely on speech signals and 
lack these additional perceptual inputs, making it challenging 
for them to recognize domain-specific phrases. To address this 
limitation, researchers are developing Contextualized ASR 
(CASR) systems [3] that incorporate knowledge beyond speech 
signals. This approach enhances the understanding capabilities 
of ASR models and adapts them to diverse contexts, leading to 
more accurate and reliable speech recognition.  

CASR research can be broadly categorized into three groups: 
shallow fusion, deep biasing, and prompting. 1) Shallow fusion 
[3, 4, 5] uses weighted finite state transducers (WFST) to com-
bine the output of external N-gram language models with the 
output of the ASR model. While this can improve ASR perfor-
mance, it requires careful tuning of the fusion weights for opti-
mal results. 2) Deep biasing [6, 7, 8, 9] employs cross-attention 
[10] mechanisms to integrate keyword representations into the 
hidden layers of ASR models, effectively improving the recog-
nition of domain-specific terms. 3) Prompting [11, 12, 13] in-
volves providing contextual information as an input sequence 
to the ASR model. Among these CASR methods, the contextual 
adapter (CA) [14] stands out for its simplicity and effectiveness. 
It integrates a list of pre-defined keywords into the ASR model 
using a cross-attention mechanism. Notably, CA employs an 
adapter-style training method, necessitating the tuning of only 
about 3% of the model weights. This approach offers a 



2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 

significant advantage over other CASR methods. Despite their 
effectiveness, CA models still face challenges in distinguishing 
between keywords with similar sounds and generalizing to un-
common keyword pronunciations, especially in scenarios with 
limited resources.  

Previous studies [15, 16, 17] have primarily focused on en-
riching keyword representations by integrating keyword pho-
neme features derived from a simple sequence encoder with 
keyword grapheme features to overcome these obstacles. How-
ever, such phoneme representations are insufficient due to lim-
ited keyword variation in the training corpus and the fact that 
human pronunciation varies in different contexts, involving 
linking and variations. For example, in English, the pronuncia-
tion of “black cab” may result in a linking sound, making it 
sound like “bla-cab,” while “red apple” may sound like “re-
dapple.”  

To address these challenges, recent advancements in self-su-
pervised learning (SSL) offer promising solutions, particularly 
for scenarios with limited resources. SSL involves pre-training 
a model on large amounts of unlabeled data to obtain rich fea-
ture representations. This method does not rely on a large 
amount of manually labeled data but instead uses the intrinsic 
structure within the data to learn useful representations.  

In the field of CASR, research on enhancing contextual 
adapters through phoneme-aware encoding using self-super-
vised learning is limited. In this paper, we argue that incorpo-
rating more fine-grained phoneme features is necessary to im-
prove keyword recognition. We propose utilizing a self-super-
vised learning (SSL) phoneme encoder to provide detailed pho-
neme information, which can effectively address variations and 
reduce phonetic confusion between keywords. This approach 
aims to enhance the accuracy and reliability of CASR systems 
in recognizing domain-specific terms and uncommon keyword 
pronunciations.  

In summary, our contributions are at least three-fold: 

• SSL Phoneme Encoder Integration: We introduce a
self-supervised learning (SSL) phoneme encoder to en-
hance keyword phoneme representation in CASR sys-
tems, capturing fine-grained phonemic details to im-
prove recognition accuracy.

• Phonetic Confusion Reduction: Our approach signifi-
cantly reduces phonetic confusion between keywords
with similar sounds, leveraging detailed phonemic fea-
tures for more precise keyword recognition.

• Enhanced Out-of-Domain Generalization: Experi-
ments on the SlideSpeech benchmark dataset show the
effectiveness of our methods in improving both in-do-
main and out-of-domain keyword recognition, demon-
strating robustness and versatility.

II. RELATED WORK

Recently, contextual adapter (CA) [14] has demonstrated con-
siderable success; however, its performance often declines 
when phoneme confusion increases in rare word lists. To ad-
dress this issue, a phoneme-based encoding method was intro-
duced to enhance the recognition of words with irregular pro-
nunciations [15, 16, 17]. Despite its benefits, this method still 
lacks context consideration when encoding phonemes. To over-
come this limitation, we propose combining detailed phoneme-
aware features generated by the self-supervised learning (SSL) 
model XPhoneBERT [18]. 

XPhoneBERT was originally developed to enhance text-to-
speech (TTS) tasks by learning robust phoneme representations. 
We propose utilizing XPhoneBERT to CASR models. XPhone-
BERT is a pioneering multilingual model with a BERT-base 
architecture [19], trained using the masked prediction objective 
on a dataset of 330 million phoneme-level sentences from 
nearly 100 languages. This extensive training enables it to 

(a) Attention-based encoder-decoder (AED) model with contextual adapter (b) Fusion mechanism

Fig 1. (a) The architecture of phoneme-aware contextual adapter with attention-encoder-decoder architecture. (b) Fusion 
mechanism of the context feature and SSL feature. 
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generate high-quality phoneme representations across various 
languages. Key features of XPhoneBERT include multilingual 
capability and a focus on phoneme-level data, capturing fine-
grained phonetic nuances crucial for both TTS and ASR tasks. 
We adapt XPhoneBERT for contextualized ASR models by in-
corporating it as a phoneme encoder. 

III. PROPOSED METHOD

Before we delve into our proposed methods, we will first de-
scribe the architecture of our backbone E2E ASR model, which 
is an attention-based encoder-decoder (AED) network. Next, 
we introduce the contextual adapter (CA) methods. Finally, we 
elaborate on our proposed SSL phoneme features enriched CA 
approach. 
A. Backbone E2E ASR Model

An AED model generally consists of an encoder network and a
decoder network, as shown in Figure 1(a) in the gray part.
Given an audio signal X = (𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑇𝑇) of length 𝑇𝑇, repre-
sent the acoustic feature vectors, and 𝐲𝐲 = (𝑦𝑦1 ,𝑦𝑦2, … , 𝑦𝑦𝑀𝑀) of
length 𝑀𝑀  be the corresponding subword sequence. The en-
coder network, EncAE(∙), processes a sequence of acoustic fea-
ture vectors, X, and produces a sequence of high-level acoustic
representations, HAE = EncAE(𝐱𝐱𝑡𝑡) . The decoder network,
Dec(∙), then fuses these acoustic embeddings HAE  with the
previously decoded text tokens 𝐲𝐲1:𝑚𝑚 = (𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑚𝑚) using a
cross-attention mechanism. The output probability of a possible 
upcoming token 𝐲𝐲𝑚𝑚+1 can be derived by

𝐲𝐲𝑚𝑚+1 = Dec(HAE, 𝐲𝐲1:𝑚𝑚). (1) 

B. Contextual Adapter
Contextual adaptation (CA) is a mechanism designed to en-
hance the recognition accuracy of ASR models for rare or con-
text-specific words by incorporating additional contextual in-
formation into the ASR model. CA introduces two additional
components to the original ASR model: a context encoder and
an attention-based adapter.

The Context Encoder, denoted as EncCE(∙), processes a key-
word list, consist of 𝑁𝑁  keywords B = {𝐛𝐛0,𝐛𝐛𝟏𝟏, … ,𝐛𝐛𝑁𝑁}  into 
the contextual representations HCE = EncCE(B). 

The attention-based adapter then integrates these contextual 
embeddings HCE  into the ASR model using a multi-head 
cross-attention mechanism. The attention process can be de-
rived as: 

BCE = softmax(H
AEWQ(HCEWK)⊤

√𝑑𝑑  
)HCEWV, (2) 

where WQ, WK , WV  are trainable weight matrices, and 𝑑𝑑 is 
the dimensionality of the embeddings. This biasing matrix BCE 
is then used to contextualize the original acoustic embeddings, 
resulting in H́AE = HAE + BCE. By incorporating the contex-
tual information in this manner, the ASR model can more ac-
curately recognize and transcribe rare words that are crucial for 
understanding the input audio sequence. 
C. SSL Phoneme Features Enriched Contextual Adapter

We leverage phoneme features extracted from the SSL pho-
neme encoder, XPhoneBERT, alongside the context embed-
ding HCE generated by the context encoder to produce pho-
neme-aware context embeddings, as illustrated in Fig. 1(a).

The phoneme encoder, denoted as Encpho(∙), extracts SSL 
features represented as Hssl

CE = Encpho(B). We then concate-
nate these phoneme features Hssl

CE  with the context features 
HCE  to form a combined feature representation Hcat

CE =
Concat(Hssl

CE, HCE). 
Next, we apply a depth-wise convolution to this combined 

representation to capture information from adjacent dimensions, 
as investigate in [20], resulting in Hdw

CE =
DepthwiseConv(Hcat

CE ) . The output of this convolution is 
summed with the original concatenated features, followed by a 
linear projection to produce the final phoneme-aware context 
embedding H�CE = �H𝑑𝑑𝑑𝑑

CE + Hcat
CE �W, as shown in Figure 1(b). 

These phoneme-aware context embeddings are subsequently 
used to generate the key embedding of the attention-based 
adapter, which is jointly optimized with the ASR model. 

IV. EXPERIMENTAL SETUP

A. Dataset and Evaluation Metrics
The SlideSpeech corpus [21] is a comprehensive audio-visual
dataset containing over 1,000 hours of slide presentations. It
includes real-time synchronized slides, pre-processed Optical

Table 1. In-domain testing: WER, K-WER and NK-WER results for History and Computer Science test datasets. 

Domain Model WER K-WER NK-WER

Computer Science 

Conformer 13.75 13.21 13.90 

+ CA 14.80 14.41 14.90 

+ SSL feature 13.61 9.83 14.64 

History 

Conformer 13.90 15.18 13.66 

+ CA 14.86 16.57 14.55 

+ SSL feature 14.80 14.38 14.86 



2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 

Character Recognition (OCR) results, and extracted keywords 
corresponding to the slides, making it an ideal dataset for eval-
uating the CASR task. SlideSpeech spans 22 diverse domain 
categories, with Computer Science and History being the larg-
est. Therefore, our experiments focused on these two domains, 
as they are well-represented in the corpus. For the Computer 
Science dataset, we divided it into a training set with 109 hours, 
a development set with 20 hours, and a test set with 32 hours. 
Similarly, for the History dataset, the training set contained 173 
hours, the development set 20 hours, and the test set 47 hours. 

During training, we dynamically generated a keyword list 
that included keywords randomly selected from multiple utter-
ances within the batch as distractors, with the total number of 
distractors set to 200 for all experiments. We adapted the key-
words provided by the SlideSpeech corpus. Since training with 
the entire keyword list is memory-intensive, we dynamically 
generated a subset of the keyword list during training. This sub-
set included keywords randomly selected from the full list, the 
reference keywords in the utterance, and a special token 
<OOV>, which serves as a fallback when no relevant context 
words are available. During testing, the keyword lists consist of 
keywords from the target utterance along with distractors, with 
the total number of distractors set to 1000. We evaluate contex-
tual biasing performance using word error rate (WER), key-
word word error rate (K-WER), and non-keyword word error 
rate (NK-WER). K-WER is calculated as the number of incor-
rect keywords in the keyword list divided by the total number 
of keywords in the test set. NK-WER is the number of incorrect 
non-keywords in the keyword list divided by the total number 
of non-keywords in the test set. 
B. Baseline Models

We used a Conformer-Transformer model as the backbone for
long-tailed speech recognition experiments. The network con-
sists of a Conformer encoder [22] and a Transformer decoder
[23] (denoted by Conformer for short). The Conformer encoder
consists of 12 blocks, each with 2,048 hidden units and 8 atten-
tion heads. The Trans-former decoder network includes 6

1 https://huggingface.co/vinai/xphonebert-base 

blocks, each also with 2,048 hidden units. Our proposed 
method is compared against the iconic contextual adapter (CA) 
method, which serves as a strong baseline in this study. The 
contextual adapter is equipped with a cross-attention layer hav-
ing 8 heads, each with a size of 64. The input features are audio 
features from the Slidepeech dataset, with each audio segment 
converted into 80-dimensional Mel spectrograms and normal-
ized at the frame level. During training, we use the Adam opti-
mizer with an initial learning rate set to 0.001, employing a 
learning rate decay strategy. The batch size is set to 64, and the 
model is trained for 35 epochs.  

The components of the Contextual Adapter are as follows: 
The phoneme encoder uses XPhoneBERT 1, which converts 
phoneme sequences into 768-dimensional phonetic representa-
tions. The encoder includes an embedding layer that maps input 
tokens to 512-dimensional embeddings, an OOV embedding 

Table 2. Out of domain generalization: WER, K-WER and NK-WER results for History and Computer Science test datasets. 

Training Domain Testing Domain Model WER K-WER NK-WER

History Computer Science 

Conformer 16.59 16.15 16.65 

+ CA 17.48 16.95 17.57 

+ SSL feature 16.45 13.79 16.87 

Computer Science History 

Conformer 21.06 19.75 21.28 

+ CA 22.42 21.32 22.60 

+ SSL feature 22.22 21.92 22.27 

(a) WER

(b) K-WER

Fig 2. The impact of WER and K-WER under differ-
ent keyword list sizes. 
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layer that converts 512-dimensional embeddings to a single 
dimension to handle unknown tokens, and a padding embed-
ding layer similar to the OOV embedding but used for padding 
tokens. The RNN encoder is composed of a bidirectional LSTM 
with two layers, each with 512 hidden units, where the final 
LSTM output is projected to 512 dimensions. A dropout layer 
with a rate of 0.1 is applied to prevent overfitting, and layer 
normalization is applied to intermediate features. Depth-wise 
convolution fusion is performed with a 1D convolutional layer 
with 1280 groups for channel feature fusion, followed by a pro-
jection layer that projects the fused features to 512 dimensions. 
The adapter includes a custom multi-headed attention mecha-
nism, which consists of linear layers for query, key, and value 
transformations, each outputting 512 dimensions. A dropout 
rate of 0.1 is applied to the attention mechanism, and a projec-
tion layer projects the attention outputs back to 512 dimensions. 

To encourage further research, we will make our code pub-
licly available for benchmarking and replication experiments. 

V. EXPERIMENTAL RESULTS

We begin our experiments by evaluating the performance on 
the in-domain dataset, comparing baseline Conformer models 
with and without contextual adapter (CA) and Self-Supervised 
Learning (SSL) features. Next, we assess the out-of-domain 
generalization adaptability of the CASR model by training and 
testing on different domain datasets. We then analyze how var-
iations in the size of the keyword list affect the WER and K-
WER. Finally, we visualize attention maps to understand the 

alignment between audio features and keywords, both with and 
without SSL features. 
A. Main Results
Table 1 presents the in-domain testing results for Computer
Science and History subset. The baseline Conformer model
shows decent performance, but incorporating the CA results in
a slight increase in error rates. In contrast, adding SSL features
significantly improves performance, particularly in reducing
the K-WER. These results indicate that while CA alone may
not reduce errors, combining CA with SSL features enhances
performance, especially in recognizing keywords, thus improv-
ing the overall accuracy of the ASR model in the Computer
Science and History domain.
B. Cross-domain Generalizations
Table 3 highlights significant differences in performance across
cross-domain datasets with various model configurations.
When training on History domain dataset and testing on Com-
puter Science domain dataset, the baseline model shows higher
error rates, which increase further with CA. However, adding
SSL features reduces these rates. Similarly, when training on
Computer Science data and testing on History domain dataset,
the baseline model shows high error rates, which increase with
CA and decrease slightly with SSL features. These results sug-
gest that while contextual adapters and SSL features can im-
prove performance on cross-domain datasets, they may also
lead to higher error rates in some cases.
C. Impact of Different Size of the Keyword list
Figure 2(a) shows that the WER decreases significantly as the
size of the keyword list decreases. For instance, the WER is

(a) Without SSL feature

(b) With SSL features

Fig 3. Visualization of the attention scores within the adapter, “dissertations” and “college” are the target keywords, in the 
exemplar utterance: “dissertations and college and alumni magazines.” In (a), the contextual adapter is easily confused by 
phonetically similar keywords. In contrast, (b) demonstrates that our SSL feature-enriched contextual adapter effectively 
distinguishes keywords from other distractors. 
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lower with a smaller keyword list, highlighting the effective-
ness of our method in accurately handling rare words. Figure 
2(b) illustrates that the K-WER increases as the size of the key-
word list grows. This suggests that while larger keyword lists 
provide more context, they also introduce complexity, nega-
tively impacting keyword recognition performance. Therefore, 
a balanced keyword list size is crucial for optimizing the trade-
off between context and complexity, enhancing the accuracy of 
specific keywords. 
D.  Qualitative Analysis 
Figure 3 visually depicts the corresponding results. On the X-
axis stands for time stamps while the Y-axis displays keywords, 
with “dissertations,” “collect” being the target keywords. 
Brighter pixels in the attention map signify higher attention 
weights assigned by the model to each rare word at a given time 
stamp. The figure illustrates the attention relationship between 
audio features and keywords, demonstrating the effectiveness 
of our method in integrating phoneme and contextual infor-
mation. Without SSL features, the bias word does not effec-
tively align with the frames. In contrast, with SSL features, the 
bias word aligns well with the frames, indicating better model 
convergence. 

VI. CONCLUSIONS 

In this paper, we presented a novel method to enhance the per-
formance of ASR systems by integrating fine-grained phoneme 
SSL features into a contextual adapter. Our approach leverages 
both phoneme and contextual information to improve the accu-
racy of recognizing context-specific words. By incorporating 
SSL models to extract phoneme representations from the key-
word list, we provided dual representations that include both 
phonetic and grapheme information. This method significantly 
improves keyword recognition accuracy by comprehensively 
utilizing external knowledge and contextual information. Fur-
thermore, by employing SSL models to extract phoneme fea-
tures, we enhanced the accuracy of recognizing keywords. In 
future work, we will explore applying our approach to a wider 
range of datasets, investigate real-time ASR applications.  
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