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Abstract—Pitch estimation is a fundamental aspect of audio
signal processing with applications in music information retrieval
(MIR), speech analysis and more. This paper proposes a new
model for real-time dual-pitch estimation to tackle the problem
of estimating two pitches at the same time in duet songs. The
model is designed for real-time processing, frame by frame and
with streamlined components for efficiency. We also propose
data augmentation methods for simulating duet singing scenarios.
Our model is robust in single and dual-pitch scenarios through
experiments with various datasets and metrics. Our results
contribute to the pitch estimation techniques and provide a
practical solution for real-time audio processing in MIR, speech
analysis and beyond.

I. INTRODUCTION

Pitch estimation has long been a pivotal topic in the domain
of music information retrieval (MIR), finding applications in
diverse areas such as melody extraction, and speech/music
transcription. The existing landscape of pitch estimation meth-
ods can be broadly categorized into two types: those rooted
in digital signal processing (DSP) and those driven by data.
DSP-based methods encompass widely recognized algorithms
like RAPT [1], YIN [2], and pYIN [3], which leverage time-
domain periodicity features for pitch estimation. On the other
hand, data-driven approaches, exemplified by neural network
(NN)-based methods such as CREPE [4] and the hybrid
model [5], rely on both time-domain and frequency-domain
features, yielding superior performance compared with DSP-
based methods.

Despite the effectiveness of these algorithms in pitch es-
timation tasks, their suitability for real-time applications re-
mains limited — an imperative in scenarios like speaker
identification [6], voice analysis [7], and music analysis [8].
Notably, the karaoke grading system should heavily rely not
only on accurate single-pitch estimation for solo songs, but
also on dual-pitch estimation for duet songs, to assess users’
performance [9]. While the YIN algorithm stands out for
its low computational overhead, due to its reliance on auto-
correlation, it is faced with the challenge of handling two
pitches simultaneously [2]. Recently, there has been a surge
in the adoption of NN approaches for multi-pitch estimation.
LATE/DEEP [10] uses a stack of 2D convolution layers
to analyze the harmonic structure. RNN-BLSTM [11] uses
the recurrent networks to capture the temporal information.
However, a notable limitation of these methods lies in their
inability to fulfill the real-time execution criterion. Motivated

by this gap, our research endeavors to develop a real-time dual-
pitch extraction algorithm for the karaoke grading system.

Our methodology builds upon the spectral branch in a
previous study [12] while refining its efficiency. With the
focus on efficiency, we adapt specific blocks to meet our
objectives, prioritizing real-time performance on embedded
systems with limited computational power. Concurrently, we
leverage the log-scale spectrogram—an efficient representation
to decipher the harmonic structure [5]—as the key feature input
for our proposed NN model. Central to the architecture of
the proposed model is the harmonic aware block, crucial for
capturing underlying harmonic patterns essential for accurate
pitch extraction [12]. Throughout the design process, careful
attention is given to parameter optimization to minimize com-
putational overhead while maintaining performance.

The rest of the paper is organized as follows. Section II
presents the utilized features and details the proposed model.
Section III outlines the datasets, and offers insights into
the experimental configurations. Section IV delves into the
experimental results and ensuing discussions. Lastly, Section V
encapsulates the essence of our study through the concluding
remarks.

II. PROPOSED MODEL

A. Input Features

Temporal and spectral features often serve as fundamental
representations to NN models for audio applications [13]. To
optimize computational efficiency, we adopted the log-scaled
short-time Fourier transform (STFT)-based spectrogram, as
the primary input representation for our model as in [5]. In
addition to using the log-frequency representation, we applied
the logarithmic scale to the magnitude of the log-spectrogram.
As for the frequency resolution and the frequency coverage,
we set 24 bins per octave, and took the first 176 frequency
bins, covering 31 Hz to 4857 Hz, as the input representation
to our model. The frequency coverage of 31 Hz to 4857 Hz
was selected by following the setting in [14] to cover the pitch
range of singing voices.

B. Proposed System Architecture

The original spectral branch proposed in [12] utilizes infor-
mation from previous and subsequent frames to predict pitch of
the current frame. However, for the real-time task, our system
adopts a frame-based approach, necessitating adjustments to



Fig. 1: The overall architecture of our proposed model.

the spectral branch architecture, as shown in Fig. 1. Specifi-
cally, we replaced all 2-D convolutional blocks in the original
spectral branch with 1-D convolutional blocks and eliminated
several blocks to streamline the model complexity. Details of
the parameter settings in our model are outlined in Table I.

The model begins with two convolution blocks. Each block
contains one layer of 1-D convolution with the kernel size of
8 and the stride of 1. The convolution layer is followed by
batch normalization [15], ReLU activation, and the Maxpool
layer with the pool size of 2 and the stride of 2. After the
convolution blocks, there are the residual connection block
(Res. Block) and the Harmonic-aware block (Har. Block). The
residual connection block is shown in Fig. 2, and details of
the Harmonic-aware block is illustrated in Fig. 3. At the end
of the model, the layers of LSTM and MLP are deployed with
the hidden size of 256 and 512, respectively. The zero-padding
technique is employed at each convolution layer to maintain
consistent input and output sizes.

The Harmonic-aware block is designed to capture specific
harmonics based on Equation 1.

di,j = log21/Q(jf0)− log21/Q(if0) = Qlog2(
j

i
) (1)

where i, j represent the indexes of the harmonics, di,j signifies
the number of bins between i-th and j-th harmonics, Q
denotes the number of bins per octave, and f0 stands for the
fundamental frequency. We set the parameter Q = 24. This
setting yields interval computations between the 2nd, 3rd, and
4th to the 1st harmonic, resulting in approximately 24, 38,
and 48 frequency bins, respectively. Two Max-pooling layers
with the stride of 2 are used before the Harmonic-aware block,
which implies the adoption of a 4× downsampling. Therefore,

Fig. 2: The architecture of the residual block (Res. Block) in
the proposed model.

TABLE I: Architecture configuration of the model. The Res.
Block denotes for residual block, Har. block denotes for

harmonic aware block.

Layer Configuration Input Output
Conv1D kernel 8, filters 3, stride 1 1 x 176 8 x 176
MaxPool1D pool 2, stride 2 8 x 176 8 x 88
Conv1D kernel 8, filters 3, stride 1 8 x 88 8 x 88
MaxPool1D pool 2, stride 2 8 x 88 8 x 44
Res. Block Conv1D: kernel 8, filters 1, stride 1 8 x 44 8 x 44

Conv1D: kernel 8, filters 3, stride 1
Har. Block Conv1D: kernel 8, filters 1, stride 1 8 x 44 1 x 44

Conv1D: kernel 1, filters 6/10/12, stride 1
MaxPool1D pool 2, stride 2 1 x 44 1 x 22
LSTM hidden size 256 1 x 22 1 x 256
MLP layer hidden size 512 1 x 256 127

three parallel 1-D convolution kernels with sizes 6, 10, and
12 are employed to identify harmonic structures and enhance
classification accuracy. The idea of using 1-D convolution
kernels with fixed sizes to decipher harmonics on the log-
spectrogram was proposed and evaluated in the previous study
[5].

C. Dual-pitch Extraction

The estimated pitch is taken from the model’s final output
layer. The 127-dimensional output shows the most likely
pitch as the highest value, called peak1. For duet songs, the
second singer’s pitch (peak2) is identified as the index with
the second-highest value in the output layer. We distinguish
between silence, solo, and duet scenarios based on the peak’s
magnitude as follows:

Number of Singer =


2 if peak2/peak1 ≥ 0.5

1 if peak2/peak1 < 0.5

0 if peak1, peak2 < α

(2)

In other words, if the ratio between the magnitudes of peak2
and peak1 exceeds or equals to 0.5, the scenario is classified
as a duet, and two predicted pitches are reported. Otherwise,
if the ratio is below 0.5, it is seen as a solo scenario, and only
peak1 is given. If both peak1 and peak2 are less than α, the
scenario is considered a silence, and no pitch is given.

III. EXPERIMENT SETTING

A. Model Setting

Initially, raw audio signals undergo resampling to achieve
a 48 kHz sampling rate. Subsequently, the signals are trans-
formed into spectrograms using STFT with a window size
of 4096 and a hop size of 1024. Then, the linear frequency
axis is transformed into the log frequency axis using the
setting mentioned in Section II.A, and the magnitude is also
transformed into the logarithmic scale.

In this work, the pitch estimation problem is treated as a
classification task. We partition frequency spanning from 31
Hz (B0) to 1175 Hz (D6) into 127 pitch classes, excluding an
unvoiced class. To establish the mapping between frequencies
and pitch classes, we employ the following equation:

fn = 31 ∗ 2(n−1)/2/12 (3)
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Fig. 3: Details of Harmonic-aware block (Har. Block) in our model. ”C”, and ”H” respectively denote for the number of
channels, and feature dimension.

where n is the index of the pitch class, and fn is the
corresponding frequency.

For the labeling process, we employ a multi-label strategy
[16], depicted in Fig. 4. Frames featuring two singers are
allocated two pitches, labeled as 1 each, whereas frames with
a single singer are labeled with a single pitch marked as
1. Frames without vocalization are identified with all pitch
classes set to 0. Additionally, to ensure consistency between
the audio signal and labels, we resample the labels, using
mir eval library [17], in the dataset to match the frame length
of the log-spectrogram.

In this work, we employ the binary cross-entropy loss
function to compute the error between the ground truth pitch
vector yi and the prediction pitch vector ŷi for each frame:

L(y, ŷ) =

127∑
i=1

−yilog(p(ŷi))− (1− yi)log(1− p(ŷi)) (4)

Fig. 4: Output samples of the labeling method (left panel: a
duet frame; right panel: a solo frame).

We used the Adam optimizer [18] in this work, with the
learning rate of 0.001. Adam facilitates faster convergence by
dynamically adjusting the learning rate during training.

B. Training Datasets and Data Augmentation

The MIR-1k dataset [19], comprising 1000 audio clips
featuring 8 females and 11 males, serves as our primary
training dataset. Each audio clip spans a duration ranging from
4 to 13 seconds, with a cumulative duration of 133 minutes.
In particular, this dataset encompasses both instrumental and
vocal tracks, separated into the left and right channels, re-
spectively. Given our focus on monophonic scenarios, training
exclusively utilizes data from the vocal channel. In addition,
the vocal data are augmented to enhance the diversity and
robustness of our model. Specifically, we employ shift-up (10
semitones) and shift-down (8 semitones) methods on vocal data
to broaden the frequency range seen by the model.

Besides the single-pitch training dataset extracted from
MIR-1k, we derive a new dataset from MIR-1k to simulate
duet singing scenarios. This involves a mixing process where
the original vocal track is first pitch-shifted upwards, followed
by a mixing operation utilizing two conditions:

Duet =

{
Original + (0.8 ∼ 0.95) ∗ (Shift upversion)

(0.8 ∼ 0.95) ∗Original + (Shift upversion)
(5)

The above two mixing conditions simulate situations where
one singer’s volume is slightly lower than the other’s.

As for shifting pitch upward, we consider two augmentation
methods. In the first augmentation method (AUG1), we up-
shift the pitch of the vocal track in intervals of 3, 4, 7, and
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12 semitones, representing the minor third, major third, fifth,
and octave, respectively. These intervals are commonly used in
singing techniques [20]. In order to enhance our data-driven
approach, we try the second augmentation method (AUG2),
which considers all possible harmony singing scenarios by
shifting up the vocal track with intervals from 1 to 12
semitones. For both augmentation methods, we use Eq. 5 to
generate duet-singing datasets.

C. Evaluation Datasets and Metrics

For single pitch evaluation, we use the Vocadito dataset
[21], which contains 40 short excerpts in 7 different languages
of monophonic singing. Since we cannot find public duet
singing datasets, we apply audio stems from the Dagstuhl
ChoirSet dataset [22], which focuses on choral singing, to
create our own test sets for duet singing. The ChoirSet dataset
includes recordings from multiple singers performing three
pieces in various harmonies: Soprano, Alto, Tenor, and Bass.
Each singer was recorded using three types of microphones:
a headset microphone (HSM), a larynx microphone (LRX),
and a dynamic microphone (DYM). In practice, vocal pitch
frequencies typically range from 100 Hz to 400 Hz [23].
Therefore, we extracted tenor and alto audios recorded by
the LRX microphone from the dataset, pitch ranging from
approximately 130 Hz to 698 Hz, and mixed them together
to mimic duet singing for evaluation purposes.

To evaluate the models’ efficacy on dual-pitch extraction, we
employ metrics mentioned in [24]: Precision (P), Recall (R),
F-score (F), FLOPs, and the number of parameters. Predicted
pitches falling within the range of the true label, with the
tolerant window of ± 0.5 semitones, are considered correct
predictions.

IV. RESULTS AND DISCUSSION

In this study, we conduct comprehensive experiments with
different model configurations denoted as Proposed 0, Pro-
posed 1, and Proposed 2, as detailed in Table II. Within the
Proposed 0 configuration, the number of channels in Harmonic
blocks is 64. The Proposed 1 configuration maintains consis-
tency with the Proposed 0 configuration regarding components,
albeit with a reduction in the count of Harmonic blocks’ chan-
nels to 8. The Proposed 2 configuration represents a different
combination of modules from the Proposed 1 configuration,
lacking one Harmonic-aware block.

TABLE II: Configurations of compared models. It shows the
included (O) and excluded (X) components for different

models. Used channel numbers (C) are shown in parentheses.

Conv. 1 Conv. 2 Res. + Har.
Block 1

Res. + Har.
Block 2

Proposed 0 O O O (C: 64) O (C:64)
Proposed 1 O O O (C:8) O (C:8)
Proposed 2 O O X O (C:8)

Fig. 5: The example output of the Proposed 2 configuration
on a duet song. It shows the pitch tracks of two singers in red
and blue colors respectively, overlaid on the log-spectrogram.
The left region (1) indicates a duet singing situation, and the

right region (2) indicates a solo singing situation.

A. Experiments on Different Thresholds

Firstly, we assess the performance of the proposed model
using precision (P), recall (R), and F-score (F) metrics across
varying thresholds, α, in Eq. 2. The threshold governs the
trade-off between false positives and false negatives, crucial
for refining the detection accuracy. Table III summarizes the
results on dual-pitch extraction, using the Proposed 2 config-
uration, with thresholds ranging from 0.2 to 0.6.

Upon examination of the results, it is evident that the optimal
F-score is achieved at a threshold of 0.2, with corresponding
scores of P = 0.8669, R = 0.8592, and F = 0.8630. It indicates a
good balanced precision and recall at this threshold. However,
as the threshold is further increased, there is a significant
decline in the performance of all metrics. Therefore, we set
the threshold to 0.2 for all experiments.

B. Performance Comparison of Data Augmentation Methods
on Duet Songs

Results in Tables IV and V demonstrate a huge improvement
in the model when using the second data augmentation method
(AUG2) for training. All configurations have significant in-
creases in precision, recall, and F-score. Notable, the Proposed
2 configuration in AUG2 outperforms all configurations in
AUG1 with P=0.8669, R=0.8592, and F=0.8630. These results
show that the AUG2 method is more effective in generalizing
the model without increasing the computation. Although these
scores are slightly lower than scores of LATE/DEEP [10], the
Proposed 2 configuration has a big advantage in computation
efficiency with only 7.33M FLOPs compared to LATE/DEEP’s

TABLE III: Performance scores of dual-pitch extraction thresh-
olds α in Eq. 2.

α P R F
0.2 0.8669 0.8592 0.8630
0.3 0.8494 0.8418 0.8455
0.4 0.8340 0.8266 0.8302
0.5 0.7974 0.7903 0.7938
0.6 0.7250 0.7186 0.7217
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TABLE IV: Performance evaluation on duet songs using
AUG1 duet dataset. FLOPS is computed based on an

one-second-length signal.

P R F FLOPs Params
Proposed 0 0.8227 0.8151 0.8188 39.51M 1.28M
Proposed 1 0.8109 0.8033 0.8070 11.04M 1.26M
Proposed 2 0.7825 0.7749 0.7786 7.33M 0.80M

TABLE V: Performance evaluation on duet songs using
AUG2 duet dataset. FLOPS is computed based on an

one-second-length signal.

P R F FLOPs Params
Proposed 0 0.8829 0.8752 0.8790 39.51M 1.28M
Proposed 1 0.8834 0.8757 0.8795 11.04M 1.26M
Proposed 2 0.8669 0.8592 0.8630 7.33M 0.80M
LATE/DEEP [10] 0.8757 0.8684 0.8720 1.06G 0.59M

1.06G FLOPs. The huge reduction in computation makes
Proposed 2 much more suitable for real-time applications. Fig.
5 shows an example output of Proposed 2 on a duet song. It
showcases two estimated pitch tracks, represented by red and
blue lines respectively, overlaid on the log-spectrogram.

C. Model Performance on Solo Songs

We also assess the performance of compared models on
solo songs using a range of metrics, including overall accuracy
(OA), raw pitch accuracy (RPA), raw chroma accuracy (RCA),
voicing recall (VR), and voicing false alarm (VFA) in Mir eval
tool [17], which are often used in literature of single-pitch
detection. As illustrated in Table VI, Proposed 2 demon-
strates commendable performance, achieving high accuracy
while maintaining efficiency despite parameter reductions and
reduced computational time. When compared against YIN [2],
a trusted real-time single-pitch detection algorithm, Proposed
2 outperforms it across all metrics. In addition, results in the
table also demonstrate Proposed 2 outperforms the spectral
branch of the NN model [12] in almost all metrics. The spectral
branch of [12] utilizes 11 frames of feature, which are from
the first 352 frequency bin of the log-spectrogram, to predict
the current pitch. Due to its high complexity, with FLOPs =
1.97G and parameters = 5.26M, it cannot be used for real-time
inference.

V. CONCLUSIONS

In summary, we have presented a new neural network for
real-time dual-pitch extraction to address the need for fast
and accurate pitch estimation in audio processing. Our model
works well for solo and duet songs. We get comparable results
by using spectral features in one framework and reducing the
computational cost. We also introduced a new data augmenta-
tion method for simulating duet singing. Our results show the
potential of neural networks in audio processing and opens up
new applications in MIR, speech processing and beyond. Next
work will be to optimize and refine our model and explore
more applications in real world scenarios.

TABLE VI: Performance evaluation on solo songs. SB is
short for ’spectral branch’.

OA RPA RCA VR VFA
Proposed 0 0.8386 0.8216 0.8230 0.9694 0.2507
Proposed 1 0.8407 0.8029 0.8066 0.9592 0.1957
Proposed 2 0.8289 0.7964 0.7978 0.9630 0.2215

YIN [2] 0.6106 0.6608 0.6710 0.9519 0.5011
SB of [12] 0.8449 0.7552 0.7604 0.9160 0.1179
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