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Abstract—Speech enhancement for drone audition applica-
tions is challenging due to the low SNR with large spectra feature
overlap and limited computing resources. We propose SMoLnet-
T, a complex spectral mapping approach with frame-wise
CNN and newly-formulated spectral combination transformers.
SMoLnet-T incorporates dilated CNN to extract spectral maps of
high-frequency resolution for its transformers. This allows it to
focus on a higher level of abstraction and determine the combi-
nation of spectral maps is crucial for enhancement across a large
temporal context. Experiment results with noise recorded from a
hovering drone highlight the efficacy of SMoLnet-T over DPTNet
with significantly lower computational requirements and speech
distortion while achieving improved speech intelligibility under
SNR < −23 dB.

Index Terms—Convolution neural network, deep learning,
transformer, drone audition, speech enhancement

I. INTRODUCTION

Drone audition has profound applications in search and

rescue, surveillance, and package delivery. These applications

require enabling (acoustic) technologies such as source local-

ization [1, 2], sound classification [3], noise suppression [4],

and tracking [5]. Unlike conventional microphone array sys-

tems for indoor environments [6], speech enhancement for

unmanned aerial vehicles (UAVs) is challenging due to the

ego-noise generated during flight [7]. Operating under such

an adverse low signal-to-noise ratio (SNR) environment limits

the enhancement performance when the spectra feature of

speech and drone noise overlap. Furthermore, the limited

onboard computing resources necessitate the algorithm to be

“light-weight”.

Deep learning approaches for speech enhancement under

low SNR conditions have been gaining attention in recent

years [8–10]. One such approach involves the estimation

of rotor noise power spectral density by exploiting UAV
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rotor characteristics and signals from the received micro-

phones [8]. More recently, a small model on low SNR net-

work (SMoLnet) has been proposed for single-channel drone

noise reduction [9]. Employing exponentially dilated convolu-

tions [11, 12], the convolutional neural network (CNN) within

SMoLnet requires fewer learnable parameters while achieving

significant noise reduction and improved speech intelligibility

comparable to larger models. An independent study [13] that

focuses on single-channel speech enhancement showed that

the resource-efficient SMoLnet achieves reasonable speech

quality (in terms of perceptual evaluation of speech qual-

ity (PESQ) [14] and scale-invariant signal-to-distortion ra-

tio (SI-SDR) [15]) compared to the more extensive single-

channel dual-path transformer network (DPTNet) [16] and

the deep complex U-net (DCUNet) [17] at very low SNR.

However, due to the shorter temporal context of SMoLnet, it

suffers from lower speech intelligibility performance in terms

of the extended short-time objective intelligibility (ESTOI)

measure [18].

To leverage longer temporal context, recent deep learn-

ing approaches incorporate transformers [19]. In particular,

unlike CNNs and recurrent neural networks (RNNs), the

transformer architecture exploits significant temporal contexts

more effectively via its self-attention mechanism and has

found applications in speech processing models [16, 20]. Of

particular interest is the time-domain DPTNet [16], which

employs the intra- and inter-transformer for the exploitation

of local and sub-global temporal information, respectively. It

is also useful to note that separating the time-domain signal

into local frames and global chunks reduces the computational

complexity required to process all the frames.

As an extension, the time-domain Sepformer [21] allevi-

ates the need for the RNN within DPTNet by employing

multiple transformers with fixed positional encoding [19].

This facilitates modeling of the temporal positioning infor-

mation resulting in a highly-parallelized model that does not

require step-wise processing by RNN. The model, however,



Fig. 1. Masking-based approaches for speech processing algorithms [16, 20,
21, 23]

requires a significantly larger number of learnable parameters

to achieve similar performance to that of DPTNet. More

recently, a magnitude-domain approach [20], where short-

time Fourier transform (STFT) [22] features serve as input to

the transformer, has been proposed. This approach performs

similarly to the Sepformer with lower computational cost by

achieving a trade-off between several global chunks and local

frames. Apart from enhancing the magnitude (while leaving

the phase unprocessed), the use of multiple transformers

require considerable computational resources.

We propose the SMoLnet-T, consisting a frame-wise

CNN with newly formulated spectral-attention transformers.

The proposed approach is based on complex spectral map-

ping, which extracts high-resolution spectral feature maps

through exponentially increasing frequency-dilated convolu-

tions. These spectral maps, along with their associated fre-

quency position information, are retained for the subsequent

spectral combination transformers. In contrast to existing

transformer-based approaches such as DPTNet that focuses

on alternating between the local or sub-global information,

SMoLnet-T focuses on a higher level of abstraction by deter-

mining which combination of high-resolution spectral maps

generated by the frame-wise CNN is suitable for enhancement

in the global aspect. This avoids the need for masking, which,

in general, extracts features ineffectively.

II. PROBLEM FORMULATION AND LITERATURE REVIEW

The received signal of a single-channel microphone

mounted on a UAV can be expressed as

yτ = xτ + vτ , (1)

where xτ , vτ ∈ R are the (clean) speech and noise signals,

respectively, 1 ≤ τ ≤ T is the sample index with T being

the number of samples. Due to the significant computation

associated with the high-fidelity speech signal, transformer-

based approaches [16, 20, 21], in general, focus on reducing

the processing of large T samples. The general framework for

the use of these transformer networks is depicted in Fig. 1.

The DPTNet [16] employs an encoder

D[1] = fseg2

(
frelu

(
fconv

(
fseg1 (y)

)))
, (2)

where y = [y1, . . . , yT ]
T

with (·)T being the transpose

operator. Here, fseg1 : R1×T → R
L×I segments the received

signal into I overlapping vectors each with L samples. The

convolution function fconv : R
L×I → R

N×I subsequently fil-

ters these samples with N number of filters each of length L.

The function frelu is the rectified linear unit (ReLU) [24]

activation unit, and fseg2 : R
N×I → R

N×K×P further

segments the activated features to P overlapping chunks each

of length K. It is important to note that N < L ≤ T .

With D
[1]
p ∈ R

N×K being the pth matrix of D[1], DPTNet
employs B consecutive dual-path transformers such that [16]

D̃
[b]
p = fintra−t

(
D

[b]
p

)
, (3)

D
[b+1]
k = finter−t

(
D̃

[b]
k

)
, (4)

where 1 ≤ b ≤ B is the index of the dual-path trans-

former, D
[b]
p ∈ R

N×K is the encoded signal, and D̃
[b]
p ∈

R
N×K and D̃

[b]
k ∈ R

N×P are the intermediate outputs. Here,

1 ≤ p ≤ P and 1 ≤ k ≤ K, are, respectively, the local

and global indices with P being the number of chunks and

K being the length of chunks. In (4), D
[b+1]
k is the encoded

signal for the subsequent dual-path transformers.

The variables f
[b]
intra−t and f

[b]
inter−t in (3) and (4) are the bth

dual-path transformers, where each computes a self-attention

mechanism given by

Qi,h = DiW
Q
h , Ki,h = DiW

K
h , Vi,h = DiW

V
h .

We have omitted b for clarity and that h ∈ [1, H] denotes the
head index with H being the number of heads. The variable

i =

{
p, for fintra−t;

k, for finter−t,
(5)

denotes the embedding index. The query Qi,h, keys Ki,h, and
values Vi,h are, respectively, computed using weights

W
Q
h ,W

K
h,W

V
h ∈

{
R

K×
D
H , for fintra−t;

R
P×

D
H , for finter−t.

(6)

Thereafter, the multi-head attention is achieved via

Ai = fcat

(
[Ai,1, . . . ,Ai,h, . . . ,Ai,H ]

)
WO, (7)

where fcat concatenates the single-head attention Ai,h ∈
R

N×D
H along the second dimension and WO ∈ R

D×D

denotes output weights to achieve Ai ∈ R
N×D. Here,

Ai,h = fsoftmax

(
Qi,hK

T
i,h√

D

)
Vi,h. (8)

With (7), the DPTNet employs the improved trans-
former [25] described by

Ḋi = fln1 (Ai +Di) , (9)

D̈i = frelu

(
fRNN

(
Ḋi

))
W2 + b2, (10)

...
Di = fln2

(
Ḋi + D̈i

)
, (11)

where fln1 and fln2 denote layer normalizations, W2 ∈ R
D×D

and b2 ∈ R
1×D denote the weight and the bias, respectively.

The variables Ḋi and D̈i are the intermediate outputs of the



improved transformer, and the output
...
Di is used as the input

of (3) or (4) such that

...
Di =

{
D̃i, if subsequent transformer is finter−t;

Di, if subsequent transformer is fintra−t.
(12)

The function fRNN in (10) is an RNN that learns the order in-

formation of the input. We note that the improved transformer

differs from the transformer [19] in two ways—a feed-forward

network is employed instead of fRNN and that a fixed position

encoding is added to Di.

If there are no subsequent transformer (i.e., b = B) in (12),
the estimated signal is decoded using

M = fola

(
fconv

( ...
Di

) )
, (13)

x̂ = fdeconv

(
D

[1]
p ⊙M

)
, (14)

where M is the mask, and fdeconv, fola, and ⊙ are transpose

convolution, overlap-add, and Hadamard product operators.

With reference to (8), it is important to note that the sequential

information due to the attention mechanism is on the first

dimension, and its computational requirement scales quadrat-

ically with this dimension. For DPTNet, this dimension has N

elements determined by fconv.

In contrast to DPTNet, the Sepformer [21] alleviates the

need of RNN in (10) by incorporating sinusoidal positional

encoding [19] to D
[b]
p in (4) and D̃

[b]
k in (3), respectively, via

D
′[b]
p = D[b]

p +EN×K , D̃
′[b]
k = D̃

[b]
k +EN×P , (15)

where the nth row and kth column of EN×K is expressed as

en,k =




sin
(

k

100002n/N

)
, if n is even;

cos
(

k

100002n/N

)
, if n is odd,

(16)

and similarly for EN×P , i.e.,

en,p =




sin
(

p

100002n/N

)
, if n is even;

cos
(

p

100002n/N

)
, if n is odd.

(17)

Instead of employing a learned encoder-decoder in (2)

and (14) for DPTNet and SepFormer, the magnitude-based

SepFormer (Mag-SepFormer) [20] operates on the spectral-

temporal domain by re-formulating (1) as

yt,f = xt,f + vt,f , (18)

where 1 ≤ t ≤ T is the time index with T being the number
of time frames, while 1 ≤ f ≤ F is the frequency index
with F being the number of the frequency bins. Defining
yf = [y1,f , . . . , yT,f ]

T and Y = [y1, . . . ,yF ] ∈ R
T×F , the

Mag-SepFormer encodes the received signals as

D
mag =

∣∣∣YT
∣∣∣ , (19)

where | · | is the element-wise magnitude operator. The

estimated signal is then given by

M
mag = frelu ◦ fconv−b ◦ fola

◦ fconv ◦ fp−relu ◦ fsep (D
mag) , (20)

X
T = D

mag ⊙M
mag ⊙ exp

(
ȷ YT

)
, (21)

where ◦, fsep, and fp−relu are, respectively, the function com-

posite, the SepFormer, and parametric ReLU [26] operations.

The function fc−branch (·) = fsigmoid

(
fconv (·)

)
+ftanh

(
fconv (·)

)

with fsigmoid and ftanh being the sigmoid and hyperbolic

tangent operations, respectively. Here, exp(ȷ YT) defines the

noisy (unprocessed) phase information with exp (·) being the

exponential function, ȷ =
√
−1, and · being the associated

angle. The signal X ∈ C
T×F in (21) is then decoded back to

time-domain via the inverse short-time Fourier transform.

It is worth noting that a time-domain signal with a high

sampling rate and long duration results in P >> K for the

time-domain dual-path transformers and that computational

complexity associated with finter−t in (4) is significantly

larger than fintra−t in (3). In contrast to the time-domain

DPTNet and Sepformer, Mag-Sepformer employs a larger

frame length F > K to reduce the number of chunks (i.e.,

P > T ) and that P > F is set to strike a balance between

the computation complexity of finter−t and fintra−t.

While aforementioned approaches, in general, employ dual-

path transformers to reduce computational complexity, these

approaches still rely on multiple transformers (i.e., B > 2).

Furthermore, they employ either features extracted from only

a single layer of convolution layer in (2) or the unprocessed

magnitude spectrum in (19). The use of such encoded features

are limiting since they contain largely noisy signals which are

subsequently masked via (13) or (20), respectively.

III. THE PROPOSED SMOLNET-T MODEL

With reference to Fig. 2, the proposed small model on low

SNR network with post transformer (SMoLnet-T) consists of

a frame-wise CNN and a spectral combination transformer.

The frame-wise CNN is based on the first ten layers of the

SMoLnet, where it extracts high-resolution spectral feature

maps. Since the spectral order in each frame is maintained, the

subsequent transformer focuses on the extracted feature maps

that are crucial based on the overall temporal information.

A. Frame-wise SMoLnet

With yt,f defined in (18), and that yℜ,t and yℑ,t ∈
R

F×1 are the real and imaginary component of yt =
[yt,1, . . . , yt,F ]

T
, respectively, the proposed SMoLnet-T

with L = log2(F ) + 1 convolution layers is expressed as

Z
[l]
t = f

[l]
CNN

(
Z

[l−1]
t

)
. (22)

Here, 1 ≤ l ≤ L is the layer index and Z
[l]
t =[

z
[l]
t,1, . . . , z

[l]
t,F

]
∈ R

C×F consists the C spectral feature with

Z
[0]
t = [yℜ,t,yℑ,t]

T
(23)



Fig. 2. Proposed direct-mapping approach with frame-wise SMoLnet and spectral combination transformer.

being the complex spectral input. The lth convolution layer

in (22) is given by

f
[l]
CNN = f

[l]
relu ◦ f

[l]
ln ◦ f[l]di−conv ◦ f

[l]
pad (24)

with f
[l]
relu, f

[l]
ln , f

[l]
di−conv, and f

[l]
pad being the ReLU activation,

layer normalization [27], convolution, and zero padding func-

tions, respectively. Here, filter f
[l]
di−conv is of length k = 3, and

a dilation rate D(l) = 2l−1 is set across the frequency dimen-

sion to achieve a receptive field larger than F . In addition,

Z
[l]
t has been padded on both ends such that f

[l]
pad

(
Z

[l]
t

)
∈

R
C×(F+D(l)+1). Hence, the f th node of the lth layer is

achieved by leveraging the corresponding node of the l− 1th

layer. This process facilitates the positional consistency of

the frequency information and maintains the high-resolution

frequency information throughout. In contrast to employing a

transformer that relies on adding sinusoidal encoding to the

input or RNN to maintain positional consistency, the proposed

CNN ensures position consistency while efficiently exploiting

global high-resolution frequency information.

B. Spectral combination transformer

Since high-frequency spectral features have been achieved
in ZL

t ∈ R
C×F in (22), subsequent transformer layers are

formulated to focus on the temporal aspect. Given D
[1]
f =[

z
[L]
1,f , . . . , z

[L]
t,f , . . . , z

[L]
T,f

]T
∈ R

T×C with z
[L]
t,f from (22), the

proposed SMoLnet-T employs M consecutive transformers

D
[m+1]
f = f

[m]
SCT

(
D

[m]
f

)
, (25)

where the mth transformer is computed from

f
[m]
SCT = f

[m]
ln2

◦ f[m]
ffn2

◦ f[m]
ffn1

◦ f[m]
ln1

◦ f[m]
mha ◦ f

[m]
pe . (26)

For succinctness in notation, we omit m henceforth. Similar to

Sepformer [21] and Mag-Sepformer [20], we avoid the need

for RNN in DPTNet via position-encoded spectral maps

D′
f = fpe (Df ) = Df +ET×C , (27)

where the tth row and cth column of the fixed position
encoding ET×C is given by [19]

et,c =




sin
(

t

100002c/C

)
, if c is even;

cos
(

t

100002c/C

)
, if c is odd.

(28)

Compared with RNN and CNN models, where the sequence

order is inherent, a transformer-based approach requires po-

sitional encoding such as (28) to achieve such information.

With D′
f , the multi-head attention is given by

Af = fmha

(
D

′

f

)

= fcat ([Af,1, . . . ,Af,h, . . . ,Af,H ])WO
, (29)

where WO ∈ R
C
H ×C is the output weights and

Af,h = fsoftmax

(

Qf,hK
T
f,h√

C

)

Vf,h (30)

is the single-head self-attention. Defining weights

WQ
h ,W

K
h ,W

V
h ∈ R

C× C
H for the query, key, and value,

respectively, we have

Qf,h = D
′

fW
Q
h , (31)

Kf,h = D
′

fW
K
h, (32)

Vf,h = D
′

fW
V
h. (33)

Here, 0 ≤ h ≤ H denotes the head index with H being

the number of heads. The hth head of the proposed attention

mechanism in (30), therefore, focuses on the important feature

map (out of the C features maps) in D
[m]
f for every t. Hence,

A
[m]
f encapsulates the top H important feature maps to focus

on, resulting in enhanced network training by highlighting the

important spectral features within the temporal period T . The

attention mechanism in (29) is translatable across frequencies

since the proposed CNN in (22) maintains the frequency

position consistency for the feature maps.

With Af in (29) and D′
f in (27), the transformer estimates

the feature maps for its subsequent transformer via

Ḋf = fln1
(
Af +D

′

f

)
, (34)

D̈f = fffn1

(
Ḋf

)
= frelu

(
ḊfW1 + b1

)
, (35)

...
Df = fffn2

(
D̈f

)
= frelu

(
D̈fW2 + b2

)
, (36)

....
D f = fln2

(
Ḋf +

...
Df

)
, (37)

where fffn1 and fffn2 are feed-forward networks corresponding

to weights W1 ∈ R
C×4C , W2 ∈ R

4C×C , and biases b1 ∈
R

C×1 and b2 ∈ R
4C×1, respectively. Here,

....
D f serves as the

input to the subsequent transformer (i.e, D
[m+1]
f in (25)).

With D
[M ]
f being the output of the last transformer in (37),

the estimated speech is given by

[x̂ℜ,f , x̂ℑ,f ] = D
[M ]
f Wlast + blast, (38)

x̂ = x̂ℜ,f + ȷx̂ℑ,f , (39)

where Wlast ∈ R
C×2 and blast ∈ R

1×2 are, respectively,

the weights and bias of the last feed-forward neural net-

work. Here, x̂ℜ,f and x̂ℑ,f are the real and imaginary



components of the estimated signal, respectively. In contrast

to the mask [16] in (13), the proposed transformer per-

forms a direct mapping from the frame-wise spectral maps

(i.e. ZL
t ∈ R

C×F in (22)) to the output. This allows the overall

transformer network to decide, at a higher level of abstraction,

which subset of high-resolution spectral maps generated by

the frame-wise SMoLnet is crucial at t. This is achieved by

the consistency in position and the high-resolution frequency

information retained by the proposed frame-wise SMoLnet.

IV. EXPERIMENT RESULTS

We evaluate our proposed model using a WSJ0 noise

dataset collected from a hovering drone and speech ut-

terances from WSJ0-84 [28]. An hour of noise was used

and out of the 8714 data points, 6382, 1166, and 1052
were allocated for training, validation, and testing, re-

spectively. The speakers and SNRs for training, valida-

tion, and testing were varied to validate the model’s gen-

eralization for out-of-training speakers and SNRs. More

specifically, for training, validation, and testing, the SNRs

(in decibels) are drawn from {−30,−27,−24,−21,−18},

{−31,−28,−25,−22,−19}, and {−32,−29,−26,−23}, re-

spectively. A batch size of two was selected to train the

proposed SMoLnet-T and the baselines DPTnet [16] and

SMoLnet [9]. We note that SMoLnet-T requires low GPU

memory usage, and a larger batch size and length can be

selected. However, for fair comparison with the baselines,

which require significant amount of GPU memory during

training, we fixed the batch size to two. For SMoLnet-T and

SMoLnet, we set C = 64, a Hamming window of length

2048 with 50% overlap, resulting in F = 1025 and T = 123.

For SMoLnet-T, M ∈ {1, 2, 3} was used to highlight the

importance of the temporal context achieved via the spectral

combination transformer. An Adam optimizer [29] was used

with a learning rate of 0.001 and the model with the best

validation result over 100 epochs was selected for testing.

We evaluate the speech enhancement performance in terms

of speech intelligibility via ESTOI [18] and speech distortion

via SI-SDR [15]. As shown in Fig. 3, all models exhibited

improved ESTOI and SI-SDR over the received (unprocessed)

signal. In general, SMoLnet-T achieves lower speech dis-

tortion compared to the baselines for all tested SNRs. In

particular, for out-of-training SNR of −32 dB, SMoLnet-T

achieves significantly lower speech distortion with an SI-

SDR improvement of 2.3 and 9.3 dB over SMoLnet and

DPTNet, respectively. Although the SI-SDR is similar across

the number of transformers M in SMoLnet-T, ESTOI in-

creases with M . With M = 3, SMoLnet-T achieves an

ESTOI improvement of 0.02 over SMoLnet at an SNR

of −23 dB. The improvement in both speech intelligibility

and speech distortion by SMoLnet-T highlights the efficacy

of the proposed spectral combination transformer in leverag-

ing temporal context over the CNN approach in SMoLnet.

Furthermore, the overall higher performance for SMoLnet-T
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Fig. 3. Speech enhancement performance in terms of (a) SI-SDR [15] and
(b) ESTOI [18].

TABLE I
COMPUTATIONAL RESOURCES REQUIREMENT FOR A BATCH SIZE OF 2

EACH WITH 64 K SAMPLES ON THE NVIDIA RTX6000 ADA.

Method
Train time

(mins/epoch)
Model

size
GPU

mem. (GB)

SMoLnet-T (M = 1) 2.8 192 k 4.7
SMoLnet-T (M = 2) 4.3 254 k 5.6
SMoLnet-T (M = 3) 6.0 317 k 6.7
SMoLnet [9] 1.6 249 k 2.8
DPTnet [16] 40.0 2.6 M 40.0

and SMoLnet compared to DPTnet highlights the viability of

direct mapping over masking under low SNR scenarios.

We evaluate the computation resources required, which

includes the training time per epoch, model size in terms of

the number of learnable parameters, and the amount of GPU

memory usage used during training. The Nvidia RTX6000

Ada with 48 GB of GPU available memory is used. As

shown in Table I, the proposed SMoLnet-T requires signif-

icantly lower computational resources than DPTNet. More

specifically, SMoLnet-T with M = 1 requires seven times

lower GPU memory to train and is 14 times faster for an

epoch. These results highlight that SMoLnet-T can be trained

with longer sequences, requires lower GPU resources, and

achieves faster training iterations. Although the computation

needs are higher than SMoLnet, SMoLnet-T achieves a larger

context length (T = 123) compared to the nine frames

context in SMoLnet, which is beneficial for improving speech

intelligibility and reducing speech distortion.

V. CONCLUSION

We proposed the SMoLnet-T that incorporates a frame-

wise CNN with newly formulated spectral-attention trans-

formers. These transformers achieve higher efficacy over

CNN in SMoLnet by their ability to leverage high-resolution

frequency spectral maps from its frame-wise SMoLnet and



longer temporal context. Experiment results demonstrate

that SMoLnet-T achieves improved speech intelligibility and

lower speech distortion under low SNR over DPTNet with

reduced computational requirements.
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