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Abstract—Self-supervised features have shown promising
progress across several domains. In Automatic Speech Assessment
(ASA), SSL features have been widely utilized in recent research.
However, few studies have dedicated efforts to explore the layer-
wise features in pre-trained SSL models. Another key challenge
in ASA is the high cost of labeling various aspects of speech
proficiency, such as content relevance, delivery, and language
use. In this paper, we propose three unsupervised subtasks to
assist model training in ASA and examine the importance of
embeddings from each layer of the acoustic model for various
aspects. This provides preliminary research in this area. Extensive
experiments demonstrate that model training with our tailored
subtasks achieves superior performance in speech proficiency
assessment tasks.

I. INTRODUCTION

Automatic Speech Assessment (ASA) for second language
(L2) proficiency offers significant benefits for both learners
and educators. For L2 learners, ASA provides timely and
feedback, which is crucial for effective language acquisition
and skill improvement. This immediate response helps learners
identify and correct errors, reinforcing proper pronunciation.
For educators and testing institutions, ASA ensures more
efficient and consistent scoring of language assessments. By
automating the evaluation process, ASA reduces human error
and bias, leading to fairer and more accurate results.

There are various methods to measure the speech proficiency
of L2 learners, which can be broadly categorized into three
components: content, delivery, and language use. Content as-
sessment evaluates the relevance and coherence of the spoken
material. Delivery encompasses prosody, pronunciation, stress,
and other aspects related to how the speech is articulated.
Language use focuses on grammar, morphology, and syntactic
dependency, assessing the accuracy and complexity of the
language structures employed.

However, labeling content, delivery, and language use sep-
arately is extremely time-consuming and requires professional
training for the labelers. Moreover, recent research indicates
that detailed scores assigned by experts may exhibit more bias
compared to holistic scores.

Early studies in ASA [1]–[4] predominantly relied on
handcrafted features related to different aspects of speech
proficiency as input, ultimately making only holistic score

predictions. While these features offer interpretability and
align directly with human grading criteria, they are inherently
limited by the holistic label. A holistic label alone is insuf-
ficient for providing comprehensive information necessary to
effectively learn representations of various aspects of speech
proficiency.

SSL representations have made significant strides across a
range of speech processing tasks [5]–[10], including automatic
speech recognition (ASR), speech enhancement, keyword spot-
ting, speaker diarization, mispronunciation detection and diag-
nosis (MDD), and ASA. Models like wav2vec 2.0 [5], Whisper
[11], and HuBERT [12], pre-trained on extensive datasets,
leverage contextual information to extract features that are
more robust and generalizable. In the realm of ASA, these
models have proven highly effective in representing advanced
speech-related features [13], thereby enhancing the accuracy
of speech assessment.

In this paper, we propose a novel model architecture to
explore SSL features across different layers of pre-trained
acoustic encoders. We tailor various unsupervised subtasks for
content, delivery, and language use to leverage the potential
abilities of SSL features. By doing so, we provide more de-
tailed information to enhance the training of models for ASA,
avoiding the enormous consumption of human resources and
ensuring a more comprehensive evaluation of L2 proficiency.

Extensive experiments demonstrate that model training with
our tailored subtasks achieves superior performance in speech
proficiency assessment tasks. Furthermore, our results show
that information related to content, delivery, and language use
is distributed across different layers of the acoustic encoder.

In summary, this paper presents three main contributions:
1) Tailoring unsupervised subtasks for content, delivery,

and language use provides more concrete information
than relying solely on holistic score labels, while also
minimizing the need for additional human resources.

2) Investigating and analyzing the feature distribution of
each aspect related to speech proficiency in the acoustic
encoders.

3) Proposing a model trained with our tailored subtasks, we
demonstrate that our approach significantly improves the
accuracy of ASA tasks.



To the best of our knowledge, the relationship between
speech proficiency features and latent representations at each
layer of the acoustic encoder in ASA is an underexplored topic.
This paper aims to provide preliminary research in this area.

II. RELATED WORK

Recently, several studies in ASA have been conducted
[14]–[16]. However, due to the scarcity of publicly available
resources, these studies typically use only holistic labels as
targets for model training. Although some research has access
to detailed labels, such as topic development, delivery, and
language use, this data is nonpublic. Even if we invest in and
train human raters to label such detailed data, the collected data
may not be sufficiently reliable due to the halo effect, where
raters may rate all or some aspects of speech proficiency with
similar scores.

SSL features from models like Whisper, wav2vec 2.0, and
HuBERT have demonstrated great performance in several
studies. However, to date, only a few studies have leveraged
the features from the various layers of these pre-trained models
to make assessments in ASA systems.

III. METHODOLOGY

A. Pseudo label generation

We generate pseudo labels for content, delivery, and lan-
guage use from the data. These pseudo labels provide more
detailed and stable information related to speech proficiency
assessment, eliminating the need for human raters.

1) Content pseudo label: In content, we direct using content
number associated with data as label.

2) Delivery pseudo label: In delivery, to measure a user’s
fluency and pronunciation, we begin by extracting some
handcrafted features related to delivery and use the K-means
algorithm to cluster the data into k clusters, which we then
use as delivery pseudo labels. We employ two different types
of acoustic models: monolingual wav2vec 2.0 and multilingual
wav2vec 2.0. We start by using multilingual wav2vec 2.0 to
recognize the transcriptions of user speech. Since L2 learners’
pronunciation and accents are quite diverse, the multilingual
training model can achieve better accuracy than the monolin-
gual model in this scenario. On the other hand, we utilize
monolingual wav2vec 2.0 to segment the audio signal into
word-level segments using the CTC segmentation algorithm
for force alignment with ASR transcriptions recognized by
multilingual wav2vec 2.0. Using the monolingual model for
alignment implies that if the L2 learner pronounces more
accurately, the alignment result will be more correct. Within
each word-level segment, we extract various delivery-related
features, including pitch, duration (DUR), intensity, following
silence, posterior probability from both monolingual and mul-
tilingual wav2vec 2.0, LM score from the n-gram LM during
transcription, and confidence score from multilingual wav2vec
2.0. These features are utilized to construct an 8-dimensional
continuous segment feature di, and subsequently, a sequence of
segment features [d1, d2, . . . , dM ] is concatenated to represent
the delivery feature, where M is a predefined length achieved

by either truncating or padding with zeros. Finally, we use the
K-means algorithm to obtain k clusters as pseudo labels.

3) Language use pseudo label: This part focuses on analyz-
ing the grammar and syntax of sentences spoken by the user.
We obtain the ASR transcription during the delivery pseudo
label process. We extract language use features from each word
to construct a sequence of language use features, which is then
constrained to length M by padding or truncating. Next, we
use spaCy, a natural language processing toolkit in Python, to
extract Part-Of-Speech (POS) tags, dependency labels (DEP),
and morphology (Morph.) labels. These features are encoded
using one-hot encoding to obtain sparse language use features.
Finally, similar to the delivery pseudo label generation, we
leverage the K-means algorithm to cluster the data into k
clusters as pseudo labels.

B. Proposed Model

To explore and leverage the representations of each layer in
acoustic models, we propose a model architecture as illustrated
in Fig. 1. This architecture trains three weighted vectors, wc,
wd, and wl, which separately combine acoustic embeddings
into latent embeddings for content, delivery, and language
use aspects. Subsequently, we use a linear layer to adapt
the combined embeddings into latent representations with H
dimensions separately. We employ CLS token embeddings to
concatenate with combined latent representations, which are
then passed through bidirectional Transformer blocks [17] of
depth D separately. We extract the CLS token representation
after the Transformer blocks to predict pseudo labels for
content, delivery, and language use using multilayer perceptron
(MLP) with Ho hidden dimensions to assist training. Finally,
all CLS tokens are concatenated and using MLP to make the
final holistic score assessment.

C. Training process

Based on our observations, although pseudo labels can
provide rich information to assist holistic score prediction,
they still contain some noise due to forced alignment errors
or ASR transcript errors. To mitigate these side effects, we
leverage a triplet loss approach across the three subtasks. This
method helps learn well-represented continuous embeddings
that cluster similar pseudo labels together and separate dis-
similar ones. The benefit is a reduction in noise effects and
the development of more robust representations. Finally, the
holistic score is predicted using cross-entropy loss to train the
model. The formulas are as follows:

L = Lc + λ(Lt(ac, pc, nc) + Lt(ad, pd, nd) + Lt(al, pl, nl))
(1)

where Lc is cross entropy loss, Lt is triplet loss, ac, pc, nc are
anchor, positive and negative samples respectively.

IV. DATASET

Public corpora in ASA are quite scarce, with the most
popular and commonly used datasets being ICNALE and
Speechocean762. Both have their strengths and weaknesses.



Fig. 1. The proposed model architecture combines latent representations from each layer of a pre-trained acoustic model to obtain embeddings for various
aspects of speech proficiency. Leveraging pseudo labels to assist the training process.

The spoken part of the ICNALE dataset includes adequately
lengthy monologues and dialogues, with each monologue
being roughly 60 seconds and each dialogue lasting 30 to 40
minutes. However, ICNALE uses English test scores such as
TOEFL, TOEIC, IELTS, and others as labels. These standard
tests reflect the vocabulary and some reading skills of English
learners but may not be sufficiently related to speaking skills.

In contrast, the Speechocean762 dataset has a large amount
of data and detailed score labeling, such as accuracy, com-
pleteness, fluency, prosody, and even phoneme-level labeling.
However, the speech in this dataset is quite short, typically
around 2 to 5 seconds, and consists only of read-aloud tasks.
This limitation prevents a comprehensive assessment in ASA
systems.

Due to the above reasons, we used a corpus collected by
the Language Training and Testing Center from the General
English Proficiency Test (GEPT) intermediate level exam in
this study. GEPT is an English certification test in Taiwan
that covers listening, reading, writing, and speaking. For our
study, we use data from the speaking section. This exam
is a high-stake English proficiency test. It includes 1,199
responses divided equally among four sets of questions, each
set answered by a different participant. The instructions given
to participants were: ”Below are a picture and four related
questions. Please complete your answers in one and a half
minutes. Do not read the number or the question when you

answer. Please first look at the picture and think about the
questions for thirty seconds.”

Figure 3 illustrates the distribution of scores and response
lengths. The scores, which range from 1 to 5, were calculated
as averages from assessments provided by two professionals,
with any floating-point values being discarded unconditionally.
To create an unknown content test set, we randomly selected
a specific set of questions. This set was designed to assess
performance under cold start conditions, where the model
encounters previously unseen content. The data not used for the
unknown content test set was split into training, development,
and known content test sets in an 8:1:1 ratio. This approach
guarantees that the model receives substantial training data
while also enabling thorough evaluation on both familiar and
new content types.

V. EXPERIMENTS AND RESULTS

A. Experiments Setup

The pretrained acoustic model used in our experiments is
the Whisper-base model, which has 7 Transformer blocks
in the encoder. The depth of the Transformer blocks in our
model is set to 3. The dimensions for the latent representations
in each aspect (H) and the hidden layers in the MLP (Ho)
were configured to be 128 and 64, respectively. Throughout
the training process, we employed the RAdam optimizer,
incorporating a weight decay of 1 × 10−5. The learning rate



Fig. 2. Response length and score distribution in the GEPT intermediate
level dataset.

was set to 2×10−4, and all experiments were carried out over
16 epochs with a batch size of 8.

B. Ablation studies

TABLE I
ABLATION STUDIES ON THREE COMPONENTS

Model Known Content
Accuracy

Unknown Content
Accuracy

Complete model 0.722 0.727
Without language use 0.667 0.697

Without delivery 0.644 0.697
Without content 0.667 0.683

Without any subtaska 0.633 0.647
a Without any subtask means that we only use a combined

embedding from the acoustic model. We then sequentially pass
this combined embedding through the same blocks of the model
as illustrated in Fig. 1, extracting a CLS token embedding to
predict the holistic score.holistic score predict.

As shown in Table I, the experiments demonstrate that
training with three subtasks outperforms all other ablation
models, indicating that each subtask improves the model’s
accuracy in holistic score assessment. The experiments also
highlight that directly using the holistic score for training
or combining embeddings from each layer for holistic score
prediction is not optimal.

C. Visualize the weight distributions in combined embeddings

Fig. 3. Absolute weight distributions across each layer in the whisper-base
encoder

We extract wc, wd, wl from complete model, normaling it
and take absolute value to shows each layers importance in
whisper-base encoder, as shown in Fig. 3. Overall, the distri-
butions for each aspect are quite distinct, proving that latent

Fig. 4. We directly extract embeddings from each layer and sequentially pass
them through the same blocks of the model, as illustrated in Fig. 1, to make
holistic score predictions. The layer numbers range from 0 to 6, representing
layers in the encoder from shallow to deep.

representations in different layers contain different meanings.
Our method successfully directs attention to these various
aspects, leveraging the unique information captured at each
layer. This differentiation enhances the model’s ability to
make more accurate and nuanced assessments. For the content
aspect, the features tend to focus on the middle layers. In
the delivery aspect, layer 1 is the most significant, but other
important features tend to focus on the deeper layers. For the
language component, the features tend to focus on both shallow
and deep layers.

D. Performance using features from each layer directly

In the Whisper-base model, when training using only the
holistic score, the general tendency is that deeper layers
provide better performance, as shown in Fig. 4. Experiments
indicate that training with only the holistic score tends to yield
better performance when using the last layer alone, achieving
0.689 and 0.687 in known content and unknown content,
respectively. In contrast, combining all layers in the Whisper-
base model, as shown in Table I, results in scores of 0.633 and
0.647 in known content and unknown content, respectively.
This phenomenon points out that the holistic score alone may
not provide sufficient information to effectively train a well-
represented combined latent representation.

VI. CONCLUSIONS

We proposed a training method with three subtasks and
demonstrated that this method can benefit model training in
the ASA system using SSL features. By incorporating subtasks
for content, delivery, and language use, our approach leverages
rich pseudo labels to provide detailed and consistent infor-
mation. This method improves the robustness and accuracy
of the model, ensuring a more comprehensive assessment of
L2 proficiency. The effectiveness of our approach is validated



through extensive experiments, demonstrating superior perfor-
mance compared to relying solely on holistic labels.

Our experiments show that features of various aspects
emerge in different layers of the model. This observation high-
lights the importance of leveraging multi-layer embeddings
to capture the diverse and complex characteristics of speech
proficiency. By analyzing and utilizing the representations
from multiple layers, our proposed method can more effec-
tively leverages content, delivery, and language use, leading to
improved performance in ASA systems.
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