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Abstract—As the advance of human-computer interaction tech-
nologies continued, keyword spotting (KWS) systems have gained
prominence in everyday devices. This study is dedicated to
exploring innovative approaches for few-shot keyword recognition
under open-set conditions, a challenging yet crucial area in speech
processing. To this end, we design and develop a multi-stage
training method that synergistically combines the advantages of
acoustic and phonetic features, thereby substantially enhancing
the ability of a KWS model. By learning multi-type features
with joint training from only one dataset, our KWS model is
equipped with a more robustness feature extractor to deal with
few-shot KWS. Experimental results demonstrate that our model
outperforms strong baselines by achieving a 15% improvement
in recognition accuracy on open-set tests in a 10shot-10way
setting. This research confirms the effectiveness of our multi-stage
strategy and suggests promising directions for future development
in keyword recognition technologies.

Index Terms: Keyword spotting, few-shot learning

I. INTRODUCTION

Keyword spotting (KWS) is a pivotal technology for human-
machine interaction, enabling seamless control of personal
and household devices during multitasking activities such as
driving and exercising. This technology can be categorized into
two primary types: fixed vocabulary KWS [1], [2] and flexible
customized KWS [3]–[6]. While traditional fixed vocabulary
KWS methods have performed robustly in data-rich scenarios,
they have faced significant challenges in environments with
limited data. Moreover, the demand for flexible KWS systems
has surged recently, driven by an increasing need for more
personalized voice-activated control devices and applications.
To address the issue of data scarcity in user-defined keywords,
numerous studies have proposed various approaches employing
few-shot learning (FSL) techniques in KWS, aiming to achieve
effective recognition of keywords with minimal speech input
from users.

The advent of few-shot learning (FSL) provided a new
direction for KWS research, particularly for customized ap-
plications. Studies have explored the use of few-shot learning
techniques to train KWS models that could adapt to new
keywords with minimal user input. These studies primarily
used large pre-trained datasets to extract generalizable features

that could be fine-tuned with a small number of examples
[7]. Recent advancements have focused on enhancing the
robustness of feature extraction in FSL settings by integrating
acoustic features with linguistic data. For instance, some
models have been developed to combine traditional acoustic
features with phoneme-based information, achieving a bal-
ance between generalization and specificity. This approach
facilitated more accurate predictions of user-defined keywords
by aligning audio features with their corresponding phonetic
sequences [8].

In addition to leveraging phoneme-based information, the
concept of prototype networks (ProtoNets) [9] has been crucial
in the evolution of FSL for KWS. ProtoNets compute class pro-
totypes as the mean of feature vectors, significantly simplifying
the adaptation process to new and rare keywords. However,
recent work extended this concept by incorporating standard
deviation measures into the ProtoNet calculations, capturing
a wider range of intra-class feature variability and enhancing
the model’s ability to handle ambiguously represented classes
[10], [11].

To further improve the performance of few-shot keyword
spotting (FS-KWS), our research has focused on using a multi-
stage strategy. Previous studies on FS-KWS predominantly
leveraged prior knowledge from extensively annotated pre-
training datasets to develop a robust feature extractor, often
depending exclusively on audio sample features or on a com-
bination of phoneme features and labeled text information for
alignment purposes [12].

In our approach, we proposed a multi-stage framework
[13]–[15] to explore the synergy between acoustic and phonetic
features, constructing a more sophisticated and robust fea-
ture extractor to enhance FS-KWS performance. Specifically,
we leveraged the dynamic properties of the acoustic spec-
trum—such as spectral energy variations—and the articulatory
characteristics inherent in phoneme sequences. To achieve
this integration, we employed two distinct models: a feature
extractor model focused on deriving robust representations
from acoustic features, and an additional Transformer-based
model that predicted the phoneme sequence of a keyword. This



phoneme sequence [16], [17] was then matched against a text-
derived phoneme sequence to assist the main feature extractor
model. Both models were trained jointly using a shared loss
function, which encouraged them to learn complementary
information and improved their generalization capabilities.
By integrating these diverse feature sets, our method not
only captured a broad spectrum of speech nuances but also
adapted more effectively to new keywords and varied acoustic
environments. This dual-model approach allowed for a richer
and more adaptive learning process, resulting in improved
performance across standard keyword spotting benchmarks.

Building on the aforementioned innovations, this paper
presented a multi-stage framework for FSL architectures con-
sisting of a feature encoder and a prototype-based open-set
classifier. This classifier was initialized with few-shot open-set
samples. We utilized the recent Multilingual Spoken Words
Corpus (MSWC) dataset [18], from which we obtained both
acoustic and textual information. Our methodology employed
two distinct models for joint training to develop a robust
feature extractor. Specifically, the feature extractor model
used the ConvMixer architecture [19], [20], optimized with
triplet loss, while the phoneme model utilized a Transformer
architecture [21], [22] coupled with Connectionist Temporal
Classification (CTC) loss. During each epoch, the losses from
both models were aggregated and recursively applied in a joint
training process. Upon completing the training of this powerful
feature extractor model, we used the Google Speech Com-
mands (GSC) v2 dataset to define prototypes for each category
based on a few-shot, few-way setup. This approach not only
simplified the adaptation to new or rare categories but also
significantly enhanced the model’s ability to generalize from
a very limited number of examples. This made it particularly
effective for applications such as keyword identification, where
the ability to quickly adapt to new user-defined keywords was
critical.

II. METHOD

In this section, we describe our approach to classifying
speech commands using a multi-stage process. Our method
consisted of three main stages: pretrain, prototype setting, and
inference. Each stage played a crucial role in building and
utilizing the model for accurate speech command classification.
The complete architecture in Fig.1.

A. Stage 1: Pretrain

We utilized the MSWC dataset for pretraining. This dataset
contained single-word audio files in multiple languages along
with their corresponding text transcriptions.

First, we extracted features from the audio data. This step in-
volved transforming raw audio signals into higher-dimensional
feature vectors that better captured key information in the
audio. We employed three different feature extractor models
for this purpose:

a) Depthwise Separable Convolutional Neural Network
(DSCNN): DSCNN [23] effectively extracted audio features
using depthwise separable convolutions, reducing model pa-
rameters and computational complexity.

b) Broadband Convolutional Residual Network
(BC ResNet): This model [24], based on residual networks,
was specifically designed to process audio features. It
improved the training of deep networks through residual
connections.

c) Convolutional Mixer (ConvMixer): ConvMixer [25]
combined convolutional and mixing layers to extract multi-
scale features, enhancing the model’s ability to perceive dif-
ferent audio patterns.

The extracted audio features were used to compute triplet
loss (1) [26]. A distance metric learning method that maxi-
mizes the distance between positive x+

i and negative x−
i sam-

ples while minimizing the distance between positive samples
and the anchor. This helped improve the discriminative ability
of the feature extractor, ensuring that similar audio files were
closer in the feature space.

LTL = − 1

Bt

Bt∑
i=1

max(δ) (1)

δ =
(
0, dL2(xi, x

+
i )− dL2(xi, x

−
i ) + margin

)
(2)

Simultaneously, we utilized audio-to-phoneme and text-
to-phoneme conversion models to convert the single-word
audio from the MSWC dataset into corresponding phoneme
sequences. For example, the word ”Hello” was converted
to [’HH’, ’EH1’, ’L’, ’OW0’]. To compare the phoneme
sequences predicted by the model with the target phoneme
sequences, we used CTC loss (3). It’s suitable for aligning
input and output sequences of variable lengths.

LCTC = − logP (y|x) (3)

where P (y|x) is the probability of the target sequence y given
the input sequence x. Then the losses from both models were
aggregated and recursively applied in a joint training process.
The total loss (4) as follows:

LTOTAL = LTL + LCTC (4)

B. Stage 2: Set Prototype

In this stage, we used the GSC v2 dataset. This dataset
contained a large number of speech samples, each belonging
to a specific speech command category. The purpose of this
stage was to extract feature prototypes for each category from
the dataset for use in subsequent classification tasks.

We utilized the feature extractors pretrained in Stage 1 to
process the GSC v2 dataset. The parameters of these extractors
were frozen and not updated at this stage.

For each speech command category, we computed the mean
of its feature vectors xS

j,i as the prototype for that category
i. This mean feature vector ci represented the centroid of the
category (5). We also computed the standard deviation σi of
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Fig. 1. Overall architecture of the multi-stage training process for few-shot keyword spotting. Used large dataset to pretrain a feature extractor, then GSC
dataset to do few shot few way’s keyword spotting.

the feature vectors for each category to capture the variability
in the feature distribution of that category (6). These measures
were used as baselines in subsequent classification tasks.

ci =
1

S

S∑
j=1

f(xS
j,i) (5)

σi =

√√√√ 1

S

S∑
j=1

(
f(xS

j,i)− ci
)2

(6)

C. Stage 3: Inference

The purpose of this stage was to classify speech commands
using the class prototypes set in Stage 2. We utilized the feature
extractors pretrained in Stage 1 and frozen in Stage 2 to process
the GSC v2 dataset. Each audio file was passed through
the frozen feature extractors, generating corresponding high-
dimensional feature vectors. These feature vectors captured key
information in the audio file.

For each extracted feature vector, we calculated its distance
to all class prototypes using two distance metrics: Euclidean
distance, which refers to the length of the line segment in space
connecting these two points. Mahalanobis distance (7) is an
effective method to calculate the similarity of two unknown
sample sets. Unlike Euclidean distance, it takes into account
the connection between various characteristics. Then based on
the calculated distances, we assigned the audio file to the class
prototype with the smallest distance. This process ensured that
each audio file was classified into the most matching category.

dMA(X⃗, Y⃗ ) =
√
(x⃗− y⃗)TΣ−1(x⃗− y⃗) (7)

The objective of the inference stage was to achieve accurate
speech command classification using pretrained models and the
set class prototypes. This method leveraged the discriminative
power of the pretrained feature extractors and the representa-
tional power of the class prototypes, making the classification
process more reliable and precise.

The multi-stage approach described in this method section
aimed to leverage the strengths of deep learning for feature ex-
traction and distance-based classification for speech command
recognition. By pretraining robust feature extractors, setting ac-
curate class prototypes, and utilizing efficient distance metrics

during inference, our method provided a reliable and precise
classification framework.

III. EXPERIMENTS

A. Experimental Setup

a) Datasets: During the pretraining stage, we utilized the
MSWC dataset. For each keyword, we selected a subset of
samples based on the smallest sample size among all keywords.
Specifically, we randomly selected 500 samples for each
keyword, except for those from the GSC v2 dataset, resulting
in an average of 5,470 samples per class. Additionally, we
incorporated background noise from the DEMAND dataset,
with Signal-to-Noise Ratio (SNR) values ranging from 0 to 5
dB. For fine-tuning, we employed the GSC v2 dataset, which
comprises 35 keywords. From these, we selected 10 keywords
(yes, no, up, down, left, right, on, off, stop, go) for our
experiments. We conducted a 10-shot 10-way classification,
utilizing 10 samples per keyword for training. Moreover,
we implemented the openNCM method to incorporate an
”unknown” class for words not included in the selected 10
keywords. The ”unknown” class was comprised of samples
from the words ”backward,” ”forward,” ”visual,” ”follow,” and
”learn,” averaging these five words to form the ”unknown”
class.

b) models: The DSCNN model had 407k parameters, the
BC ResNet model had 817k parameters, and the ConvMixer
model had 119k parameters. The models utilized Mel Fre-
quency Cepstral Coefficients (MFCC) for feature extraction.
Audio signals were divided into short frames, each lasting 40
milliseconds, with a window stride of 50%. This configuration
resulted in each window overlapping the previous one by 20
milliseconds. The resulting feature map had a size of 49x10,
where each time step consisted of 49 frames, and each frame
contained 10 MFCC features. The models were trained over
40 epochs, with each epoch consisting of 400 episodes. The
Adam optimizer was employed with an initial learning rate of
0.001, and the models were evaluated every 20 episodes using
a learning rate decay of 0.1. Furthermore, the models were also
evaluated using an online learning method to adapt to unseen
classes.
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TABLE I
SUMMARY OF MODEL PERFORMANCE ON THE GSC TESTSET UNDER 5,10-SHOT 10-WAY OPEN-SET CLASSIFICATION SETTINGS.

Feature Extractor Parameters Transformer 5 shot 10 shot
ACC↑ AUROC↑ ACC↑ AUROC↑

TC ResNet[7] 61k X 0.52 0.63 0.58 0.67
Ours TC ResNet 61k O 0.61 0.71 0.66 0.73

DSCNN[7] 407k X 0.71 0.93 0.76 0.94
Ours DSCNN 407k O 0.80 0.87 0.91 0.93

Ours BC ResNet 817k O 0.84 0.90 0.92 0.94
Ours ConvMixer 119k O 0.83 0.87 0.93 0.92

TABLE II
DIFFERENCES IN ACCURACY PERFORMANCE BETWEEN DISTANCES

CALCULATED.

Feature Extractor Distance Metrics 10 shot
Euclidean Mahalanobis ACC↑ (%)

Ours BC ResNet O 0.86
Ours BC ResNet O 0.92
Ours ConvMixer O 0.84
Ours ConvMixer O 0.93

B. Experimental Results

Table 1 included the results for all the experiments. We
initially utilized the TC ResNet and DSCNN model’s results
on few-shot experiments with acoustic features of audio files
as a reference baseline. Subsequently, we implemented our
proposed method, employing the same dataset and simultane-
ously extracting both acoustic and phonetic features for joint
training to develop a robust feature extractor. Additionally, we
introduced the concept of standard deviation in the computa-
tion of prototypes and used Mahalanobis distance formulas.
By incorporating a multi-stage training approach, the original
accuracy increased from 76% to 86%. Further modifications
involved changing the definition of few-shot, few-way proto-
types and switching to the Mahalanobis distance, which ele-
vated the experimental accuracy up to 91%, thereby achieving
superior classification performance. Furthermore, considering
the requirement for on-device operation, we opted for the
BC ResNet and ConvMixer feature encoder, which achieved
a lower parameter count and also get a higher accuracy.

Table 2 illustrates the various methods of defining the open-
set’s few-shot prototype concept, as well as the different dis-
tances calculated between the test samples and the prototypes.
We observed that the same pretrained model, as shown in rows
1 and 2, achieved better accuracy with the Mahalanobis dis-
tance when different distance metrics were applied. The table
also indicates that averaging few-shot samples into a single
vector prototype might result in some imbalanced outcomes
when testing with 400 samples per class, which significantly
contributes to the final evaluation phase.

IV. CONCLUSIONS

This study has systematically explored the implementation
and optimization of keyword spotting systems under open-
set conditions using few-shot learning frameworks. Our ex-
perimental results get an accuracy to 93%,and also affirm
the critical influence of both multi-stage’s feature extraction
training and the choice of distance metrics on the performance
of keyword spotting models. Specifically, the use of MFCC
alongside sophisticated models has demonstrated considerable
promise in enhancing the robustness and accuracy of keyword
recognition.

A significant finding from our research is the superiority
of the Mahalanobis distance over conventional Euclidean dis-
tance in computing the similarity between test samples and
prototypes. This approach not only improved accuracy but also
ensured more stable and reliable performance across various
testing scenarios. Furthermore, our exploration into prototype
averaging methods revealed that single vector representation
might introduce imbalances, particularly when a large number
of samples per class are used in testing phases. This insight
underscores the necessity for adaptive and dynamic prototype
calculation methods in few-shot learning environments.

In conclusion, our research contributes valuable insights into
the development of adaptable, efficient, and accurate keyword
spotting systems, paving the way for further innovations in
the field of speech processing technology. Future studies may
focus on refining the integration of phonetic features with
acoustic signals and exploring the potential of neural network
architectures in enhancing the generalizability of keyword
spotting systems under diverse operational conditions.
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