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Abstract—This paper presents the architecture we developed
for the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2023 Challenge, specifically Task 4 on Sound Event
Detection using Weak Labels and Synthetic Soundscapes. We
integrated embeddings from VGGSK and BEATs, and employed
a GRU-based model to classify sound events in each time frame.
The system employs thresholding and smoothing techniques in its
post-processing phase. For semi-supervised learning, we used the
mean teacher approach with an Exponential Moving Average
(EMA) strategy to update the teacher model’s parameters.
Pseudo-labels, generated by the student model, help leverage un-
labeled data. Additionally, we applied data augmentation methods
including mix-up, Gaussian noise, and embedding masking. With
additional training data, our system achieved a Polyphonic Sound
Detection Score (PSDS) of 0.529 for PSDS1 and 0.78 for PSDS2
on the validation dataset.

I. INTRODUCTION

The objective of sound event detection is to identify the
occurrence of specific sound events within an audio clip,
including their onset and termination times. A significant
challenge in employing supervised learning for this task lies
in the high cost and potential bias associated with manually
annotating sound data after its collection, as annotations can
vary greatly among different reviewers. To address this, the
DESED dataset [1] comprises audio files collected via two ap-
proaches: authentic ambient recordings and synthetic sounds.
The dataset categorizes labels into three types: strong, weak,
and unlabeled. Participants in the challenge are prompted to
utilize the DESED dataset and are permitted to incorporate
external datasets or pre-trained embeddings, although one
submitted system must rely solely on DESED without using
these additional resources, and at least one system should avoid
using ensemble methods.

For enhancing the system that can utilize external datasets
or pre-trained embeddings, the Bidirectional Encoder Rep-
resentation from Audio Transformers (BEATs) [2] based on
the Transformer architecture is employed to derive embed-
ding features. Conversely, the system exclusively trains on

the VGGSK model [3][4], a CNN-based architecture. The
Exponential Moving Average (EMA) strategy is employed
to update the VGGSK and Gated Recurrent Unit (GRU) [5]
components during the teacher-student model update process.
Data augmentation techniques such as mix-up [6], Gaussian
noise, and ICT [7] are implemented on VGGSK inputs, while
masking is applied to BEATs embeddings to enhance feature
extraction. The primary aim is to boost predictive accuracy
without extending inference time.

II. METHODOLOGY

This section will discuss the methods we used. Before
employing the mean-teacher approach, we will first conduct
supervised training on the CRNN and BEATs-VGGSK models.
Subsequently, we will train the teacher model using a semi-
supervised method to enhance the model’s performance.

A. Feature Extraction

Due to variations in sampling rates, channel numbers, and
audio file lengths in the DESED dataset, we employ the
librosa library to normalize all audio files to a consistent
16000 Hz sampling rate and convert them to a mono channel
format. Each audio file is padded to reach a standard length of
10 seconds through zero-padding. Subsequently, these audio
files are converted into Mel-spectrograms by transforming
the waveform signals and applying logarithmic scaling. We
conduct a Short-Time Fourier Transform (STFT) on these
signals using a window size of 2048 and a hop length of 256.
The Mel-spectrograms produced are of dimensions 768 (time)
and 128 (frequency), created using a bank of 128 Mel filters.

B. Baseline

The baseline model, a convolutional recurrent neural net-
work (CRNN) [8], integrates elements of both convolu-
tional neural networks (CNNs) and recurrent neural networks
(RNNs). This CRNN structure features a CNN component
consisting of seven blocks, each equipped with filters in a



sequence of 16, 32, 64, 128, 128, 128, and 128. Every
block uses a 3 × 3 kernel size and employs average-pooling
operations with configurations of [2, 2], [2, 2], [2, 1], [2, 1],
[2, 1], [2, 1], [2, 1] across the layers. The RNN segment
of the architecture includes two layers of 128 bidirectional
gated recurrent units (Bi-GRUs) [5]. An attention pooling layer
follows the RNN portion, featuring a linear layer with softmax
functions followed by multiplication with another linear layer
that utilizes sigmoid activations.

C. DataAugmentation

The mixed output is combined by audio and Gaussian noise
that RMS of the noise generated:

y[n] = x[n] + RMSnoise (1)

RMSnoise =

√
Psignal

10SNR/10 (2)

Mixup [6] is a technique that performs linear combinations
of pairs of data points and their labels. The proportion of each
data point in the combination is sampled from a Beta distri-
bution, using a parameter alpha to control the interpolation
strength between the two samples:

y[n] = α · x1[n] + (1− α) · x2[n] (3)

where y is a mixture features of x1 and x2 are log-mel-
filterbank outputs of class ID. We also multiply the one-hot
encoded label with α.

Embedding masking in the context of neural networks is a
technique used to prevent over-fitting and improve generaliza-
tion by randomly setting elements of the embedding vector to
zero during training. This can be represented mathematically
as follows:

E′ = E⊙M (4)

where ⊙ denotes the element-wise product. Each element of
M is generated independently based on a certain probability
p, which is a hyperparameter determining the likelihood that
an element of the embedding vector is masked. Typically, each
mij in M is sampled from a β distribution:

mij ∼ β(1− p) (5)

where E is the original embedding matrix. M is the mask
matrix with the same shape as E. E′ is the masked embedding
matrix, used during the forward pass in training. p is the
probability of an element being set to zero (masked).

D. BEATS

The BEATs model [2], trained on extensive datasets such
as Audioset [9], represents a significant advancement in the
field of sound event classification. Central to the BEATs
architecture is the innovative use of acoustic tokenizers, a
component designed to transform raw audio signals into a
series of discrete tokens. This transformation is achieved by
extracting meaningful audio features from the raw data, which
are then quantized into tokens that capture the fundamental
acoustic properties of the input signals. This tokenization

process simplifies the audio data, converting it into manageable
and semantically rich units.

E. VGGSK

The network architecture primarily utilizes VGGSK [3]
[4]and BEATs. In this configuration, data augmentation is
conducted during the preprocessing phase of VGGSK. Embed-
dings are derived from the BEATs model, which masking is
applied to enhance the embedding representation. The VGGSK
component of the architecture includes a VGG block and four
residual blocks that employ selective kernels (SK). For the
supervised learning, Binary Cross-Entropy (BCE) serves as the
loss function to assess model performance.

F. Interpolation Consistency Training

The interpolation consistency training (ICT) [7] is to per-
form interpolation calculation on the prediction results of the
model. ICT involves mixing any two data samples from the
dataset to create a new input for the student model, which then
makes predictions based on this mixed data. Simultaneously,
the original two data samples are used as inputs for the teacher
model, which also makes predictions. These predictions are
then blended together. Finally, the predictions made by the
student model on the mixed data are regularized for consis-
tency with the blended predictions of the teacher model, and
an additional ICT loss value is calculated to measure this
consistency.

G. Semi-supervised learning

The Mean Teacher model, employed within a semi-
supervised learning framework, utilizes a sophisticated dual-
model architecture to enhance model performance and stability
using both labeled and unlabeled data. This framework consists
of two main components: a student model and a teacher
model, which share identical network structures but differ
significantly in their parameter updating methods. The student
model is conventionally trained through gradient descent,
processing both labeled and unlabeled data. For unlabeled
data, it generates predictions that are used as pseudo labels for
training the teacher model. This phase not only optimizes the
student model’s parameters but also prepares it to update the
teacher model using the Exponential Moving Average (EMA)
strategy [10]. This EMA strategy smooths the parameters of the
teacher model, reducing the impact of volatile updates from the
student model and ensuring a more stable parameter evolution.
Moreover, the teacher model is not trained directly. Instead,
its parameters are continuously refined based on the EMA
of the student model’s parameters, enhancing the stability
and reducing discrepancies between the models, which are
quantified using Mean Square Error (MSE). To further improve
recognition accuracy, Inter-Class Training (ICT) is integrated
into the loss function, leveraging the structured yet flexible
nature of this framework to effectively harness the potential
of both labeled and unlabeled datasets in semi-supervised
learning scenarios.



The Exponential Moving Average (EMA) is used to stabilize
and update model parameters during the training process as
follow:

θema = β · θema + (1− β) · θ (6)

where θema is the exponential moving average of the model
parameters at the current step. β is the decay factor, controlling
the extent to which the previous values of emaθ influence the
new value. θ is the current parameter value.

H. Loss Function

The supervised loss Lsupervised is formulated by summing
the binary cross-entropy losses from two distinct segments of
the dataset, each processed by separate parameterized models.
Specifically, we define the loss as:

Lsupervised = BCE(θs(Xs), Ys) + BCE(θw(Xw), Yw) (7)

where θs and θw denote the model parameters tailored to spe-
cific subsets of data, denoted as Xs and Xw respectively. The
Ys and Yw represent the true binary labels corresponding to
these subsets. The Binary Cross-Entropy (BCE) loss is utilized
to measure the discrepancy between the predicted probabilities
and the actual labels across both model configurations

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2 (8)

The consistency loss Lconsistency in our framework is defined
using a combination of weighted mean squared errors (MSE)
that compare predictions made by the baseline model parame-
ters θs and θw, with those made by their perturbed counterparts
θs and θw. This formulation is expressed as:

Lconsistency = W ·{MSE(θs(X), θ′s(X
′)) + MSE(θw(X), θ′w(X

′))}
(9)

where X and X denote the original and perturbed versions
of the input data. θs and θw represent the original model
parameters, whereas θs and θw are their respective perturbed
versions. W serves as a scalar that adjusts the impact of the
MSE terms on the total loss value.

III. EXPERIMENTS

A. DataSet

The dataset consists of a training set along with validation
and evaluation components, as listed in Table I. The occur-
rences of events within these components are listed in Table II.
The training set includes: Weakly Labeled Training Set: This
subset comprises 1578 clips with 2244 class occurrences,
where each audio clip is labeled with the class of audio
events but without specific timestamps. Unlabeled In-Domain
Training Set: This subset includes 14412 clips, significantly
larger in size compared to the weakly labeled data, and it does
not contain labels. Synthetic Strongly Labeled Set: Composed
of 10000 clips created using the Scaper soundscape synthesis
and augmentation library, this subset is strongly labeled with
timestamps indicating the sound events. Real Strongly Labeled

Training Set: This subset contains 3470 audio clips sourced
from Audioset, each strongly labeled with timestamps of sound
events. This set is regarded as an external dataset. Subset
of Audioset: Selected from Audioset, this segment includes
32975 clips. Labels were removed, and the clips are used
as an external dataset. The validation dataset contains 1168
clips, each strongly labeled with timestamps. The evaluation
dataset comprises 699 clips. As shown in Figure 1, it illustrates
the key distinction between strong and weak labels in audio
event annotation. Strong labels provide precise timestamps
marking the start and end points of specific sound events within
an audio track, as shown in the waveform and spectrogram.
This labeling is detailed, indicating exactly when events like
speech or the sound of a blender occur. On the other hand,
weak labels only confirm the presence of these sound events
within the entire audio track without specifying their temporal
boundaries. The visual representation highlights that strong
labels are time-bound and specific, whereas weak labels are
more general and only indicate occurrence.

Fig. 1. The differences between strong and weak labels in audio event
annotation.

B. Evaluation Metric

The evaluation of our systems was based on the recently
introducedthreshold-independent [11] implementation of the
polyphonic sound event detection scores (PSDS).

C. Single System

Table 1 shows the performance of each stage of our single
model in the submission system. The baseline model initially
utilized both the CRNN [8] and BEATs models [2]. However, it



TABLE I
DESED DATASET

Dataset Label Type Audio Clips Sampling Rate(kHz) Type
Training Set Strong Label 13,470 44.1/16 Record / Synthetic

Weak Label 1,578 44.1 Record
Unlabeled 10,000 44.1 Record

Validation Strong Label 1,168 44.1 Record
Evaluation 699 44.1 Record

TABLE II
OCCURRENCES OF DESED EVENT CLASSES

Class Occurrences
Alarm bell ringing 2143
Blender 313
Cat 781
Dishes 2576
Dog 1949
Electric shaver toothbrush 279
Frying 620
Running water 833
Speech 9998
Vacuum Cleaner 178

was modified by replacing the CRNN model with the VGGSK
model. This change resulted in an improvement in PSDS1,
increasing it from 0.500 to 0.517. After incorporating the
strong real dataset into the training process, an improvement
was observed in PSDS2, with the value increasing from
0.764 to 0.775. By incorporating the ICT method, significant
improvements were achieved in the results. PSDS1 improved
to 0.529, indicating a substantial enhancement, while PSDS2
saw a remarkable improvement to 0.780.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MODEL CONFIGURATIONS ON

PSDS1 AND PSDS2 METRICS.

Model Configuration PSDS1 PSDS2

CRNN+BEATs (Baseline) 0.500 0.762
VGGSK+BEATs 0.517 0.764
+Strong Real Dataset 0.516 0.775
+ICT 0.529 0.780

D. Ensemble System

As listed in Table ,the performance of System 2, 3 and
4 based on BEATs-VGGSK model in validation set with
external data. Systems 3 and 4 were developed using the
same model structure but were differentiated by employing
distinct data augmentation techniques. System 3 achieved the
highest PSDS1 score of 0.552. Similarly, System 4 recorded
the highest PSDS2 score of 0.799.

IV. CONCLUSION

Our evaluation of the single and ensemble systems has
significant improvement with down stream task of pre-trained
model and data augmentation techniques. Initially, our single
model system, the BEATs-VGGSK model leads an increase
in PSDS1 from 0.500 to 0.517. Further incorporation of the

TABLE IV
PERFORMANCE OF VARIOUS SYSTEMS ON PSDS1 AND PSDS2 METRICS

WITH OPTIONAL EXTRA DATA

System Extra data PSDS1 PSDS2

CRNN (Baseline) 0.359 0.562
CRNN+BEATs (Baseline) ✓ 0.500 0.762
System 1 0.424 0.633
System 2 ✓ 0.529 0.780
System 3 ✓ 0.552 0.794
System 4 ✓ 0.542 0.799

strong real dataset significantly enhanced PSDS2, elevating
it from 0.764 to 0.775. The application of the ICT method
subsequently marked substantial improvements, with PSDS1
reaching 0.529 and PSDS2 peaking at 0.780. The ensemble
systems, specifically Systems 3 and 4, built on the BEATs-
VGGSK model and differentiated by data augmentation strate-
gies, achieved robust performance. In conclusion, the updates
to model architecture and the integration of advanced data
augmentation and training techniques like ICT significantly
contributed to the improvements in model performance.
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