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Abstract—The goal of music style transfer is to convert a music
performance by one instrument into another while keeping the
musical contents unchanged. In this paper, we investigate another
style transfer scenario called “failed-music style transfer”. Unlike
the usual music style transfer where the content remains the
same and only the instrumental characteristics are changed, this
scenario seeks to transfer the music from the source instrument
to the target instrument, with deliberately performed off-pitch.
Our work attempts to transfer normally played music into off-
pitch recorder music, which we call “failed-style recorder”, and
study the results of the conversion.

To carry out this work, we have also proposed a dataset of
failed-style recorders for this task, called “FR109 Dataset”.

Such an experiment explores the music style transfer task in
a more expressive setting, as the generated audio should sound
like an “off-pitch recorder” while maintaining a certain degree
of naturalness. 1

I. INTRODUCTION

Generally, the goal of music style transfer is to change the
style of the input audio while preserving the content of the
input audio2. In particular, the content of the input music data
refers to music features such as rhythm and melody, while
the style refers to the unique perceived characteristics that an
instrument expresses in music performance. According to the
wide range of conversion goals and targets, the tasks of music
style transfer can be broadly classified into three categories:
one-to-one [1], [2], many-to-one [3], [4], many-to-many [5],
[6]. Several music style transfer methods have been inspired
by research from different fields, such as voice conversion
(VC) [5]–[8] and image-based style transfer [9], [10].

Most of the works mainly use well-performed audio as
training data for both the source and target domains. This
implies that well-performed input audio will be converted into
equally well-performed output audio. Although this ensures
faithful style transfer, assuming all audio to be well-performed
in real world restricts the expressiveness of instruments. The
Singing Voice Beautifying (SVB) task [11] is a special case.
They used paired data of amateur and professional singing
voices for training, aiming to correct the pitch and improve
the vocal tone, indicating that the source audio was not well-
performed. In this paper, we focus on another special case,
where the target domain is not well-played. For example, the
target domain may be a soprano recorder that is deliberately
performed poorly3. We refer to this case as failed-music style
transfer. The motivation is that such failed music contains a
wider range of characteristics, but humans can still distinguish

1Demo page will be released in camera ready version
2In practice, due to the differences in pitch ranges of different instruments,

we may perform additional pitch shifting in the experiments.
3A famous example can be found at https://www.youtube.com/watch?v=

X2WH8mHJnhM

between a “failed recorder” and another instrument. This poses
a more difficult scenario to music style transfer: can a music
style transfer model not only tackle instruments that are well-
played, but also instruments that are not well-played?

Take a soprano recorder as an example, a fail-style recorder
may contain many types of errors, such as:

• Cracked voice. Producing a harsh sound.
• Weird dynamics. Unnatural volume while playing.
• Failed tonguing. Mistakes in the articulation.
• Overblowing. Blowing too hard, causing the voice to

sound raspy.
• Underblowing. Blowing not hard enough, causing the

voice to sound hissing.
Generally, these are considered errors that should not occur

in live performances. However, by definition, such errors
should not make a style transfer model malfunction. Instead,
a style transfer model should generate audio that sounds like
a failed recorder (sometimes has an unpleasant style, but still
sounds like a recorder). Such failed music style transfer might
be useful in the fields of entertainment, it could serve as the
score for some comedies or some humorous scenes.

In this paper, we investigate the music style transfer scenario
of failed recorder, treating it as a type of instrument. We
apply various general style transfer methods and analyze the
conversion results. However, there are no existing datasets
for such scenarios which were deliberately recorded as failed
style. To facilitate our research, we propose the “FR109”
dataset, a collection of failed-style recorder music recorded
by a professional, with deliberately included failures.

To sum up, the main contributions of this paper are two-fold:
• We discuss the special scenario of failed-music style

transfer that serves as a more challenging task for style
transfer. Regarding the experimental results, we analyzed
them from the perspectives of the Mel spectrogram and
Wiener entropy, proposing corresponding analyses and
interpretations.

• To carry out the work for failed-music style transfer, we
propose the FR109 dataset, a dataset of failed recorder
performance, created intentionally by experienced indi-
viduals playing a recorder.

II. DATASETS

In this work, we adopted three datasets in the experiments,
including two publicly available datasets (URMP [12] and
Bach10 [13]), and our FR109 dataset. The comparison of
different datasets is shown in Table I.

A. The URMP dataset
The URMP dataset [12] contains 44 music pieces ranging

from duets to quintets, with separated tracks for individual



TABLE I
THE LIST OF DATASETS UTILIZED IN THIS WORK,

INCLUDING THE PROPOSED FR109 DATASET. “PIECES”
STANDS FOR THE NUMBER OF MUSIC PIECES.

Dataset Instrument Pieces Total duration

URMP
Violin 34 1.02 hours

Clarinet 10 0.30 hours
Saxophone 11 0.26 hours

Bach10
Violin 10 0.09 hours

Clarinet 10 0.09 hours
Saxophone 10 0.09 hours

FR109 (Failed) recorder 109 5.05 hours

instrument recordings. There are 14 distinct instruments in this
dataset. We only used the violin, clarinet, and saxophone tracks
as the training data in our experiments.

B. The Bach10 dataset

The Bach10 dataset [13] consists of audio recordings of 10
J.S. Bach chorales performed separately with violin, clarinet,
saxophone, and bassoon. We use the violin, clarinet, and
saxophone tracks as our testing data in our experiments. Since
the training data (URMP) and testing data (Bach10) belong
to different datasets, such an evaluation scenario is more
challenging.

C. The proposed FR109 dataset

As for the failed-music style transfer, we proposed the
FR109 dataset, which consists of 109 songs recorded with a
soprano recorder played by a professional, with a total duration
of 5.05 hours. Errors are introduced to each performance
intentionally.

As discussed in Section I, the types of errors include cracked
voice, weird dynamics, failed tonguing, overblowing, and un-
derblowing. To compute the statistics of the dataset, we extract
the pitch of recorder music using CREPE [14]. The pitch mean
of the FR109 dataset is around 905Hz (between A5 and A#5),
and the maximum pitch value is 1990Hz (around B6). These
statistics match the actual pitch range of the soprano recorder,
which spans from C5 to D7.

Since there is no other dataset for failed recorder, we
use the FR109 dataset for both the training dataset and the
testing dataset in the failed-music style transfer experiments. A
90%/10% split is employed to divide the dataset into a training
dataset and a testing dataset. In our experiments, we trained
style transfer models to perform style transfer between all 4
instruments (violin, clarinet, saxophone, and failed recorder).

III. METHOD

In this work, we experiment with three different well-known
style transfer methods for failed-music style transfer, they are
StarGAN [15], VAE-GAN [7], and DDSP [3].

StarGAN [15] introduced domain labels to the generator and
discriminator, the generator uses the domain label to specify
the target domain, while the discriminator needs to predict the
input’s domain. During training, the generator and the discrim-
inator contest with each other, the generator’s objective is to

fool the discriminator, making it mispredict the domain label,
while the discriminator’s objective is to avoid being fooled
by the generator. StarGAN only used a single generator and
discriminator for learning a multi-mapping between different
styles, instead of one generator and one discriminator for each
pair of styles.

VAE-GAN [7] used one generator and one discriminator
for each domain, the generator used a variational autoencoder
composed of two parts: the universal encoder and a decoder,
the universal encoder shared across each generator to encode
the input to latent code, and a decoder to transfer the latent
code to the target domain. Since it uses the same encoder for
every input domain and target domain, the performance was
increased due to the variation of the input data. The decoder
is domain-specific so it can be specialized to that domain.
The discriminator only needed to predict whether the data was
generated for that domain.

DDSP [3] integrates classic signal processing with deep
learning. This method employs an autoencoder architecture
for style transfer within a single domain. The encoder extracts
key features from the source audio, including loudness, funda-
mental frequency, and residual information, while the decoder
maps these features to control parameters for synthesizers
to generate the output audio. DDSP has an assumption that
the pitch component extracted from the source audio should
closely match the fundamental frequency of the output audio,
which may not be suitable for failed-music style transfer.

StarGAN and VAE-GAN are two-stage style transfer
pipelines, where we first convert the source audio to Mel
spectrogram. Then, the Mel spectrogram was transferred to the
failed recorder style using the generator. Finally, the vocoder
generates waveform from the transferred Mel spectrogram.
Here, we use BigVSAN [16] as our vocoder, its pretrained
weight are available in their official repository4, which was
pretrained on the LibriTTS dataset’s training dataset [17] for
10 million steps.

The source code and model checkpoint we used in our
experiment will be released in camera ready version.

IV. EXPERIMENTS

As discussed in Section II, we used the combination of the
URMP dataset [12] and the proposed FR109 dataset’s training
dataset for training and used the combination of the Bach10
dataset [13] and the testing dataset of FR109 for evaluation.
Three different methods are compared in the experiments, they
are StarGAN [15], VAE-GAN [7], and DDSP [3].

A. Training

1) Data preprocessing: We refer to the arguments for cal-
culating the Mel spectrogram from BigVSAN [16] to compute
the Mel spectrograms of music data in our dataset, 24,000 for
sampling rate, 100-bands of Mel filter bank, 1024 for FFT /
Hann window, hop size is 256 and the frequency range is from
0 to 12,000 Hz.

4https://github.com/sony/bigvsan



TABLE II
THE FAD METRICS OF STYLE TRANSFER

MODELS TO FAILED RECORDER IN THE FR109
DATASET’S TESTING DATASET.
Models FAD (↓)

StarGAN 13.87
VAE-GAN 7.27

DDSP 38.91

B. Evaluation

In this section, we compare the performance between Star-
GAN, VAE-GAN, and DDSP. Both objective and subjective
experiments are conducted.

1) Objective evaluation: Fréchet Audio Distance (FAD)
[18] is a reference-free metric to compute the Fréchet Inception
Distance (FID) between audio embedding sets extracted from
the reference set and evaluation set, in our work, the reference
set is music from the testing dataset and the evaluation set
is music generated by the model. FAD represents the degree
of dissimilarity between the two sets. The audio embeddings
are extracted by a pretrained VGGish audio classification
model [19]. We use FAD as an objective evaluation metric
to assess the distance between the audio files converted by
StarGAN / VAE-GAN / DDSP and the real audio performance
of a target instrument.

Table II shows the FAD of the three models on the testing
dataset of the FR109 dataset (failed recorder). The results
indicate that StarGAN performs slightly worse than VAE-GAN
on both datasets. Considering that StarGAN only utilizes one
unified decoder while VAE-GAN uses one decoder for each
instrument, such a performance gap is acceptable.

As for the DDSP model, results show a significant FAD
gap between it and StarGAN or VAE-GAN. By inspecting the
audio converted by DDSP, we found that they contain a large
amount of noise, which is the reason for the high FAD values.
The results of the DDSP illustrate how its assumptions about
pitch invariance can lead it to perform better only on well-
played instrument transitions, but not to apply well to our task

2) Subjective evaluation: We performed a listening test that
evaluates the performance of converting these three (well-
played) instruments into failed recorder in the FR109 dataset’s
testing dataset (3 source-target pairs).

For each source-target pair, we randomly choose one audio
clip for the listening test. We employed a rating scheme based
on the Mean Opinion Score (MOS) [20]. For each audio clip
(converted by one of the models), we asked the participants to
evaluate its quality in three aspects: (1) Style similarity (SS) to
the target instrument, (2) Melody similarity (MS) to the original
source audio, (3) Sound quality (SQ) of the converted audio.
The scoring ranges from 1 to 5, where 1 is the worst and 5
is the best. In total, we received 16 valid responses from the
listening test. Table III shows the MOS of the FR109 dataset.

The results indicate that StarGAN’s overall performance
falls behind VAE-GAN’s on all metrics in the conversion to
failed recorder. The p-values between StarGAN and VAE-
GAN are 0.09 (SS), 0.06 (MS), and 0.02 (SQ). Although only

TABLE III
THE MOS OF THE LISTENING TEST ON THE FR109

DATASET. THE NUMBERS INSIDE THE CELLS REPRESENT
THE MOS AND THEIR STANDARD DEVIATIONS. SS, MS,

AND SQ INDICATE THE STYLE SIMILARITY, MELODY
SIMILARITY, AND SOUND QUALITY, RESPECTIVELY.
Models SS (↑) MS (↑) SQ (↑)

StarGAN 2.54 ± 1.26 3.15 ± 1.19 2.46 ± 1.27
VAE-GAN 2.98 ± 1.23 3.56 ± 0.93 3.00 ± 0.98

DDSP 1.33 ± 0.77 2.19 ± 1.11 1.38 ± 0.70

Fig. 1. Mel spectrograms of failed recorder sounds, the red rectangular parts
show the inharmonic partials.

the sound quality (SQ) is considered statistically significant,
overall, we can still conclude that StarGAN is slightly inferior
to VAE-GAN on converting to failed recorder music. As for
DDSP, similar to the objective results, the MOS results of
DDSP are significantly worse than those of StarGAN, probably
due to that DDSP generates noise more frequently. All the t-
test statistics yielded p-values well below 0.05. This reflects
the specific challenges involved in music style transfer to failed
instrument music for DSP-based synthesizers.

V. ANALYSIS

In this section, we analyze the results of failed recorder style
transfer, and further compare the tasks between the conversion
to well-played instruments (violin, clarinet, saxophone) and
failed recorder.

A. Mel spectrogram analysis

To understand the challenge of failed-music style transfer,
we first visualize the spectrograms of the failed recorder

(a) Source (b) StarGAN (c) VAE-GAN
Fig. 2. The Mel spectrograms of a failed-music style transfer example. (a) The
Mel spectrogram of the source audio, which is performed by a saxophone; (b)
The Mel spectrogram of the converted audio (to failed recorder) by StarGAN;
(c) The Mel spectrogram of the converted audio (to failed recorder) by VAE-
GAN.



TABLE IV
WIENER ENTROPY OF THE URMP DATASET
AND FR109 DATASET. VN., CL., SAX., AND

REC. REPRESENT VIOLIN, CLARINET,
SAXOPHONE, AND RECORDER, RESPECTIVELY.
Dataset Instrument Wiener entropy
URMP Vn. / Cl. / Sax. 0.0005
FR109 Rec. 0.0345

TABLE V
WIENER ENTROPY OF THE STYLE TRANSFER RESULTS
OF STARGAN AND VAE-GAN ON DIFFERENT TARGET
INSTRUMENTS. VN., CL., SAX., AND REC. REPRESENT

VIOLIN, CLARINET, SAXOPHONE, AND RECORDER,
RESPECTIVELY.

Model/Target Vn. Cl. Sax. Rec.
StarGAN 0.0007 0.0004 0.0002 0.0153

VAE-GAN 0.0003 0.0003 0.0006 0.0159

music in the FR109 dataset, as shown in Figure 1. The red
rectangular parts of the Mel spectrograms implies that the
sound has inharmonic partials, meaning that the frequencies
of the overtones do not align with integer multiples of the
fundamental frequency. This creates a more complex and less
predictable timbre. These inharmonic partials are considered
features of the failed recorder because they are present in
the Mel spectrograms of every failed recorder sample. Such
inharmonic partials are rarely found in well-played instrument
performances.

Next, we visualised an example of failed-music style trans-
fer, Figure 2(a) shows the Mel spectrogram of source audio
performed by a saxophone, in which there is no clear inhar-
monic partial. Figure 2(b) and Figure 2(c) show the audio
converted to a failed recorder by StarGAN and VAE-GAN,
respectively. We can clearly see that inharmonic partials occur
throughout the whole Mel spectrogram of StarGAN, showing
that it does capture the characteristic of failed recorders and
performs style transfer accordingly. For VAE-GAN, inhar-
monic partials can still be seen, but not as clearly as that
of StarGAN. This shows that in this particular case, while
both StarGAN and VAE-GAN do perform style transfer to
some extent, StarGAN achieves a better style similarity to a
failed recorder. Our informal listening test also confirms this
observation. We attached these audios in the supplementary
material.

Based on Figure 1 and Figure 2, it can be seen that failed-
music style transfer does show a clearly different characteristic
to the style transfer of other well-played instruments. To
achieve style transfer to failed music, a model has to generate
audio with unique properties that do not usually occur in
well-performed music. Discussing such a task would help
understand the performance and the limitation of a style
transfer model in another aspect.

B. Wiener entropy

Furthermore, we utilized the STFT-based Wiener en-
tropy [21] to quantify how much the noise-like sound is in

the results produced by StarGAN and VAE-GAN, along with
the Wiener entropy of the URMP dataset and FR109 dataset,
which serve as the benchmark for real performance of well-
performed music and failed music. Table IV shows the Wiener
entropy of the URMP dataset and the FR109 dataset, i.e. well-
played instrument music and failed recorder music, we can see
that failed recorder music exhibits a higher proportion of noise-
like characteristics compared to well-played instrument music.
Table V shows the Wiener entropy of each of the models
on different target instruments. We can see that when the
target instruments are well-played instruments, the noise in the
results from StarGAN and VAE-GAN are similar to the URMP
dataset since their Wiener entropy is very similar. For failed
recorder music, we can see that there is a gap between the
Wiener entropy of FR109 and the Wiener entropy of StarGAN
or VAE-GAN for converting to failed recorder, this shows that
there is still room for improvement in converting music to the
failed recorder style.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have conducted a series of experiments on
the failed-music style transfer, and analysed the characteristics
of this relatively special transfer in different aspects through
various evaluations.

Furthermore, we have released the FR109 dataset, consisting
of failed recorder performances, which is useful for inves-
tigating the expressiveness of different style transfer model.
Through this study, we hope to propose a music style transfer
task that is different from the usual music style transfer task
that pursues sound quality and accuracy, but rather a music
style transfer task that is more versatile.
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