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Abstract—Personalized voice activity detection (PVAD), com-
pared to conventional VAD, shows more developmental potential
in scenarios with multiple speaker interference. Among the
various methods for integrating speaker and acoustic features,
performance may be limited due to the weaker representational
capability of speaker embeddings derived from external speaker
verification models. This study proposes a new architecture
called Conditional Intermediate Attention PVAD (COIN-AT-
PVAD) to address this issue. This architecture builds upon the
Attentive Score (AS) module and incorporates the Feature-wise
Linear Modulation (FiLM) scheme to better integrate multimodal
information. Through comparing various fusion strategies, we
show that COIN-AT-PVAD significantly surpasses the baseline
model, especially when external embedding features have limited
representational capacity. Experimental findings also indicate
that, when compared to some state-of-the-art models, COIN-AT-
PVAD achieves superior average precision and accuracy while
retaining a compact model size, showcasing its efficacy in real-
world applications on resource-limited devices.

I. INTRODUCTION

Voice Activity Detection (VAD) [1]-[3] is specifically de-
veloped to detect and identify speech within received audio
signals. It serves as the front-end component for a variety
of speech processing applications, including automatic speech
recognition (ASR) [4], keyword spotting (KWS) [5], and
speech enhancement (SE) [6]. VAD reduces computational
load by filtering away non-speech content before further pro-
cessing, which is particularly important for high-performance
systems with heavy computational requirements.

However, personalized speech applications in real-world
situations often encounter voices from non-target speakers,
which causes conventional VAD systems to generate disruptive
false alarms, thereby impairing the performance of downstream
tasks. To address this issue, recent research has developed
a new variant of VAD known as Personal VAD (PVAD). In
contrast to conventional VAD, PVAD is designed to recog-
nize speech specific to a known speaker. This helps reduce
interference from other speakers and mitigate false positives
commonly seen in conventional VAD systems.

Ding et al. pioneered a straightforward PVAD approach
in their seminal work [7]. This method involves generating
speaker embeddings from enrollment speech via a speaker
verification model, concatenating speaker embeddings with
handcrafted acoustic features, and employing the concatenation

as input features into the VAD framework. The authors further
enhanced this system in PVAD 2.0 [8] by mapping speaker
embeddings to the same domain as acoustic features and
using a linear transformation to fuse the speaker information
with acoustic features. The resulting compact input features
simplify the subsequent processing stages and enhance PVAD
performance.

Building upon the PVAD paradigm, which intertwines
speaker information and acoustic data, subsequent studies have
explored various methods to improve this integration [9]-[16].
A recent study [9] conducted a comprehensive comparison and
analysis of a series of integration methods, including compar-
ing the effects of static fusion at different points in the model
pipeline and incorporating dynamic speaker estimation on both
performance and complexity. Expanding on this foundation,
[10] focused on integrating both pieces of information using
Cross-Attention in the acoustic feature space. Furthermore,
the work in [11] replaced the external speaker verification
model with an internal embedding extractor and introduces
an innovative Attentive Score (AS) loss function. This enables
the attention score module to derive the attention weight from
the concatenated features to draw attention to specific acoustic
features.

Although [11] offers an intriguing solution for PVAD, there
remains room for further validation and improvement. One of
the concerns is that the AS module integrates acoustic and
speaker information using a concatenation mechanism, which
may be too simple and ineffective.

This study introduces a novel architecture dubbed Condi-
tional Intermediate Attention PVAD (COIN-AT-PVAD) to ad-
dress the above concern with the AS module. This architecture
refines the AS module by conditionally fusing its multimodal
inputs in order to improve its performance. In addition, we
provide multiple options for locating the the presented novel
AS module within the PVAD process. The experimental results
indicate that the new COIN-AT-PVAD surpasses the baseline
model and some state-of-the-art PVAD frameworks in perfor-
mance while requiring fewer model parameters.
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Fig. 1.
Intermediate PVAD.

II. METHODS
A. Attentive PVAD with Conditioned Fusion

To begin with, we briefly review the AS module of [11].
Following that, we introduce a variant of the AS module that
incorporates conditional fusion of input features.

Liu et al. proposed an AS module for PVAD that combines
features from the target (enrollment) speaker and input utter-
ances. This module extracts a similarity score between both
features through two convolutional layers:

F, = [F; e et (1)

M, = AS(F,), )

where F; and e represent the input acoustic feature at
time frame ¢ and target speaker embedding, respectively, and
AS(-) denotes the overall function responsible for computing
the similarity score M, in the AS module.

Subsequently, by performing an element-wise multiplication
of the similarity score M, with F;, a weighted feature Fags ;
is obtained:

Fas; = F, © M,. 3)

However, the use of concatenation as in (1) to combine
speaker and acoustic information may have drawbacks: 1)
It increases the feature dimensions, leading to a parameter-
intensive model; 2) These two types of information are of
different modalities, and thus concatenating them limits the
model’s learning capability.

Among fusion strategies, feature-wise Linear Modulation
(FILM) [17] has been demonstrated in multiple studies to
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effectively combine multimodal information and reduce the
number of feature parameters [8]-[10]. Therefore, we propose
to introduce FiLM into the AS module, as shown in Fig.
1(a), to obtain the conditioned feature f‘t, which replaces the
concatenated feature F in (1). The FiLM-wise conditioned
feature F, is obtained by:

Ft = FiLM(Ft) = ,y(etarget) -F, + ﬁ(etarget). (4)

Here, v and [ represent the scaling vector and biasing vector,
respectively, and they are produced by the FILM generator
using the target speaker embedding e as conditional infor-
mation.

B. Fusion Strategies for Attention PVAD

According to subsection II-A, the advanced AS module
learns the speaker-conditioned mask M, and applies it to the
input acoustic features F;. The location arrangement of this
AS module in the PVAD pipeline inevitably influence the
performance. Partially Inspired by the different fusion manners
in [9], here we propose three variants of attentive PVAD (AT-
PVAD), which mainly differ in the positioning of the advanced
AS module inside the PVAD process, and their flowcharts are
depicted in Figs. 1(b), 1(c), and 1(d). The underlying attention
strategies are explained as follows:

o Conditional Early Attention (COEA): In this method,
speaker and acoustic information are combined through
conditional fusion at the early stage of the PVAD pipeline.
The output of AS module is then used to train the
subsequent classification module, which consists of a two-
layer LSTM and two fully connected layers (FC). This
method directly modulates the raw acoustic features and



learn a deeper classifier. Therefore, if the information
from the acoustics and the speaker differs significantly,
it may limit the fusion and lead to suboptimal results.

« Conditional Latent Attention (COLA): Similar to many
other architectures that employ conditional fusion, COLA
incorporates conditional fusion at a later stage in the
model pipeline, specifically before the fully connected
layers which serve as a simple classifier. This enables
better training of the two-layer LSTM and the FiLM
generator in front of the AC module to effectively inte-
grate multimodal information across speaker and acous-
tics compared to COEA.

o Conditional Intermediate Attention (COIN): Here,
the AS module is incorporated between two one-layer
LSTMs. This configuration allows the front LSTM to
capture improved acoustic features, while the back LSTM
aids in the final classification. Clearly, COIN is intended
to leverage the strengths of COEA and COLA in order to
achieve superior results without increasing computational
overhead.

C. Loss Function

As with other PVAD works, we employ the averaged binary
cross entropy (BCE) [18] as one source of the objective
function for the PVAD binary classification task, which is
calculated as follows:

=
Lpyap = T tz_; BCE(ys, pt)- 5)

Here, y; € {0,1} and p; € [0,1] respectively represent the
ground-truth label and the PVAD model prediction outcome at
time frame ¢, and 7T is the total number of time frames.

Additionally, based on [11], we introduce the AS loss
function Las to specifically learn the AS module. The AS
loss encourages the AS module to focus on learning the
similarities across multimodal information by calculating the
Mean Squared Error (MSE) loss between the ground-truth
label y; and the estimated weighted score m;:

my = Sigmoid(Linear(My;)), (6)
=
— = N2
Las = ;(yt — i)’ )

where M, is the similarity score shown in Eq. (2), and
Sigmoid and Linear denote the sigmoid-layer and linear-layer
operations, respectively. Finally, the above two losses are
added together to be the total loss used to train the entire
PVAD network:

Liotat = Lpvap + Las. ¥

III. EXPERIMENTAL SETUP
A. Dataset

The LibriSpeech corpus [19] is employed as the source
data to evaluate the presented PVAD systems. The training

set consists of three subsets, totaling 960 hours of speech
data from 2,338 different speakers: the training subsets train-
clean-100 and train-clean-360 provide a total of 460 hours
of clean speech, while train-other-500 provides 500 hours of
noisy speech. Similarly, the LibriSpeech test set includes both
clean and noisy speech, totaling 10 hours of speech from
73 speakers. To proceed with the experiments for PVAD,
each individual utterance in the LibriSpeech corpus cannot
be directly used since it just corresponds to a single speaker.
Therefore, we prepare a dataset that contains concatenated
utterances from multiple speakers using this corpus. We choose
utterances from one to three speakers at random following a
uniform distribution and concatenate them. For each concate-
nated utterance, one of the speakers is randomly chosen as
the target speaker. In addition, we randomly select the con-
catenated sentences with a probability of 0.2 and replace their
corresponding target speaker embeddings with the embeddings
from non-target speakers that are absent from those sentences.
This arrangement aims to prevent the model from detecting any
target speaker activity for these sentences in training. It also
improves the model’s generalization capabilities and prevents
biased outputs, which could result in high false-positive rates.

Regarding speaker embedding, utterances from each speaker
are randomly selected and fed into a pre-trained speaker ver-
ification model to generate window-level 256-dim d-vectors.
These d-vectors are then L2-normalized and averaged to pro-
duce the utterance-level d-vector, which serves as the target
speaker embedding e, Additionally, to prevent overfitting
and improve the model’s robustness, we employ the MTR
data augmentation technique [20]. This technique introduces
random noise sources with different room impulse responses,
effectively improving the model’s simulation of various noise
and reverberation conditions. Consequently, the model is ex-
pected to perform well in a broader range of real-world
environments.

B. Implementation details

We extract 40-dimensional log Mel-filterbank energies as
raw acoustic features from utterances with a frame size of 25
ms and a step of 10 ms. For three AT-PVAD variants presented,
the model details are as follows:

1) COEA: The 2-layer (front) LSTM contains 64 cells for

each layer.

2) COLA: The 2-layer (back) LSTM contains 40 cells for

each layer.

3) COIN: The one-layer front LSTM contains 40 cells, and

the one-layer back LSTM contains 64 cells.

Additionally, we prepare an AT-PVAD baseline model,
which is nearly identical to the COEA-AT-PVAD structure,
with the exception that it employs the concatenation of
raw acoustic features (40-dim Mel-filterbank energies) and
target speaker embedding as the AS module input. This
baseline model allows us to examine whether conditional
fusion outperforms direct concatenation for the two sources
of information. Finally, all AT-PVAD structures end with two
fully connected layers that serve as the classifier.



TABLE I
AVERAGE PRECISION (AP) FOR THE TARGET-SPEAKER SPEECH (TSS),
ACCURACY AND MODEL SIZE OF THE AT-PVAD VARIANTS.

Model AP (tss)  Accuracy (%) | Parameters (k)
AT-PVAD baseline 0.868 83.79 84.949
COIN-AT-PVAD 0.912 86.74 71.869
COLA-AT-PVAD 0.901 86.27 55.285
COEA-AT-PVAD 0.903 86.08 92.029

We implemented all models using PyTorch [21]. For model
training, we initially employed the Adam optimizer [22] with a
learning rate of 1 x 10~ for the first epoch, and subsequently
reduced the learning rate to 1 x 10~° for the following epochs.

IV. RESULTS AND DISCUSSIONS

We evaluate PVAD models with a variety of metrics. Accu-
racy (%) is calculated as the ratio of the number of correctly
detected frames to the total number of detected frames. It
serves as an evaluation metric to determine how well the
PVAD system identifies target speaker speech versus non-target
speaker speech frames. Average Precision (AP) is the area
under the Precision-Recall Curve with respect to the target-
speaker speech (tss). The metric AP is important because the
PVAD dataset contains fewer positive samples than negative
ones. In addition, we assess the suitability of models for
resource-limited devices by taking into account the number
of model parameters.

A. Comparison of the AT-PVAD methods

Table I displays the results of the AT-PVAD baseline and
three proposed AT-PVAD variants for comparison and analysis.
From this table, we have the following observations:

1) The three AT-PVAD variants behave better than the AT-
PVAD baseline model, revealing that the conditioned
fusion is a better way than the concatenation to merge
speaker embeddings and acoustic features as the input
to the AS module.

2) COIN-AT-PVAD exhibits the optimal performance
among the three AT-PVAD variants in the two metrics,
AP and Accuracy, and it has fewer model parameters
compared to the AT-PVAD baseline. The central place-
ment of the AS module in the PVAD pipeline provides
COIN-AT-PVAD with potential advantages:

o The front LSTM in the model acts like an acoustic
encoder, enhancing the model’s non-linear capability
to achieve better feature representation. This allows
the speaker information to be more effectively inte-
grated with the enhanced acoustic features through
the collaborative operation of the FiLM generator.

o As the AS module highlights the target speaker’s
characteristics in the deep acoustic features, the
back LSTM captures complex patterns and temporal
relationships of features before final classification,
further enhancing feature representation.

TABLE 11
AVERAGE PRECISION (AP) FOR THE TARGET-SPEAKER SPEECH (TSS),
ACCURACY AND MODEL SIZE OF THE ORIGINAL PVAD, PVAD 2.0, THE
AT-PVAD BASELINE AND COIN-AT-PVAD

Model AP (tss)  Accuracy (%) | Parameters (k)
PVAD 0.884 84.34 130.242
PVAD 2.0 0.908 86.56 97.602
AT-PVAD baseline 0.868 83.79 84.949
COIN-AT-PVAD 0.912 86.74 71.869

3) COLA-AT-PVAD has the fewest model parameters while
it behaves closely to COEA-AT-PVAD. The smaller size
of the LSTM used in COLA-AT-PVAD makes it more
suitable for deployment on resource-limited devices.

B. Comparison of AT-PVAD and the SOTA PVAD

Table II includes the evaluation results of the original
PVAD [7], PVAD 2.0 [8], the AT-PVAD baseline and the
newly presented COIN-AT-PVAD for a more comprehensive
comparison. As a note, PVAD 2.0 mainly revises the original
PVAD by introducing an FiLM layer to make the acoustic
feature conditioned with speaker embedding. We have some
findings from this table:

1) Equipped with the FILM layer, PVAD 2.0 and the novel
COIN-AT-PVAD behaves better than the original PVAD
and AT-PVAD baseline. In particular, COIN-AT-PVAD
outperforms PVAD 2.0 in all of the three metrics by
providing moderate better AP and Accuracy scores but
requiring much fewer model parameters (71.869k ver-
sus 97.602k). Thus COIN-AT-PVAD offers substantial
benefits for practical applications.

2) The AT-PVAD baseline, which grabs the idea of the AS
module in AS-pVAD [11], does not perform as well as
expected. It can be attributed to the fact that, compared
to the AT-PVAD baseline, AS-pVAD utilizes a more
advanced speaker embedding extractor (ECAPA-TDNN)
and acoustic feature encoder (TCNN) to offer superior
input representation for the AS module.

V. CONCLUSIONS

In this study, we propose a novel PVAD framework which
adopts an advanced attentive score module. This module uses
acoustic features conditioned on the target speaker embed-
ding to generate the attention weight. We have conducted
comparative analyses on the PVAD variants that incorporate
this conditional attention mechanism at the early, mid, and
late stages of the PVAD pipeline. The experimental results
show that all the PVAD variants equipped with conditional
attention perform well. Specifically, the PVAD with mid-
stage conditional attention (COIN-AT-PVAD) shows excellent
performance and has a compact model size, making it suitable
for deployment on resource-constrained devices.
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