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Abstract— Dynamic facial expression recognition (DFER) is a 

challenging topic in computer vision. One of the critical problems 

in DFER is the variation in intensity in the different scenes. 

Different intensities lead to different traits and in the low intensity 

scenarios most emotions will be misclassified as neutral expression. 

The intensity aware loss has been introduced as a method to put 

more focus on the low intensity samples and better capture the 

traits of low intensity cases to acquire better discriminative 

abilities. In this work, an alternative way to define the intensity 

aware loss is proposed. With the use of the logarithmic Euclidian 

distance, the cross-entropy loss, and the exponential decrease 

model, and model combination, the discriminative ability in the 

low-intensity case can be further improved. Moreover, several 

ways to further optimize the model was proposed. Experiments 

show that, with these proposed techniques, even better 

performance of DFER can be achieved.   

 

I. INTRODUCTION 

Facial Expression Recognition is one of the most popular 

fields in computer vision now, because of the need of better 

human-computer interactions which requires the computer to 

understand how humans feel. After the failure of Static Facial 

Expression Recognition (SFER) – which provides results with 

high accuracy for single images within lab conditions – the 

focus is now on Dynamic Facial Expression Recognition 

(DFER), which aims to classify videos into expressions. There 

are a lot of difficulties in DFER because of the nature of the 

samples. Indeed, in the datasets (like DFEW) that has been 

created to develop DFER, most of the samples are in ‘in-the-

wild’ conditions, which means that a lot of parameters (head 

motion, head angle, lighting, obstruction, intensity of the 

expression) impact the classification.  

New models have been developed to tackle these 

problematics: Former DFER [4] introduces the use of 

transformer for DFER, which allows the model to have a better 

understanding of which channels are the more relevant for the 

prediction thanks to the attention mechanism. M3DFEL [10] is 

a multi-instance learning model, the principle is to remove the 

noisy frames that will have a bad influence on the classification, 

the frames are grouped into instances and an instance is 

considered noisy if all the frames within this instance are 

negative, in which case this instance will not be considered in 

the training. NR-DFERNet [12] is also a denoising method, the 

model captures the dynamic-static features of each frame, then 

each frame’s features are compared to the average and the 

influence of one frame is determined by the gap between its 

features and the mean. The bigger the gap is, the lower is its 

influence on the training process. AEN [6] uses emotion 

grouping, the prediction is done in 2 steps: the first prediction 

is the group of emotion (positive, neutral, negative) and the 

second prediction is done within the group that has been 

predicted in the previous step. The positive group contains 

(happy, surprise), the neutral group contains only (neutral) and 

the negative one contains (sad, angry, disgust, fear). MIDAS 

[5] is a data augmentation method; data augmentation is useful 

in DFER because the number of samples are very limited and 

for example data in DFEW are imbalanced which cause a bias 

in the training. 

In [1], Li et al introduced the intensity aware loss to 

tackle the problem of intensity of the expression. Indeed, they 

notice that all the emotions tend towards the neutral emotion 

when the intensity tends towards 0. Therefore, when the 

intensity of the emotion is low the emotions are more likely to 

be misclassified because the traits are more subtle and have 

more resemblance with the other emotions, in other words 

depending on the intensity the intra-class difference is bigger 

than the inter-class difference which will cause a bias in the 

classification. The intensity aware loss puts more focus on 

those low intensity samples to try to prevent this phenomenon. 

Nevertheless, the loss function that is proposed by [1] also 

influences the high intensity samples which are supposed to be 

clear predictions, therefore this can influence negatively the 

classification training. Also, the function put more focus on the 

low intensity samples but we believe that the value that it takes 

is not optimized and therefore the function can be improved to 

better assess the purpose. 
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To tackle these 2 issues, we design a new loss function 

that takes inspiration from the principle proposed by [7]. This 

loss function will have a influence closer to 0 when the intensity 

is very high and therefore the prediction is very clear, and will 

put more focus than the original Intensity Aware Loss on the 

low intensity samples.  

We also design 3 ways to further optimize this loss 

function. Firstly, we decrease its influence on the training over 

the epochs because once the model has learnt to discriminate 

the emotions with different intensities, its influence will 

negatively impact the training. Then, we implement a 

pretrained model to tackle the data imbalance issue and lastly, 

we take inspiration from the MAN model (Mining Ambiguity 

and Noise) to combine 2 models in order to take the strength of 

both models to reduce the uncertainty. 

 

II. INTENSITY AWARE LOSS AND MAN MODELS 

The Intensity Aware Loss is used to put more focus on the low 

intensity samples during the training and is defined as:     

                 𝐿ூ஺ ൌ െlog ሺ𝑃ூ஺ሻ,   (1) 

                  𝑃ூ஺ ൌ
௘ೣ೟

௘ೣ೟ା௘ೣ೘ೌೣ
 (2) 

where xt is the target logit and xmax is the largest logit excluding 

the target. The intensity is calculated by the gap between xt and 

xmax. After analyzing the function, we can notice that the values 

of LIA are included between [0.14;0.3], which represents the 

max and min values for the highest intensity and the lowest. We 

notice that even when the intensity is at its highest, the loss 

function has an influence that is equal to almost half of its 

influence when the intensity is at the lowest. Therefore, the loss 

function impacts the model even when it should not because 

when the intensity is high the prediction is clear. Also, the 

values for the low intensity samples are pretty low and it could 

be more emphasized. 

The mining ambiguity and noised (MAN) model has been 

developed to tackle the issue of the noise in the labeling. Indeed, 

it is sometimes hard even for humans to tell what expression 

the subject is trying to make. Therefore, it is possible that the 

labelling is wrong, which will make the model learn bad 

material and the classification will be worse. They divide the 

annotations in 3 categories: clean, ambiguous and noisy. In 

order to separate the annotations, they make 2 different models 

predict the emotions. If both of them predict the target emotion, 

the annotation is considered clean. If only one of them manage 

to predict the target emotion, the annotation is ambiguous and 

finally if none of them predict the target then it is a noisy 

annotation. Then to reduce the impact of the noise in the 

labelling, different strategies are applied according to the 

category of the annotation. We will take inspiration from this 

model to combine 2 models to take the best out of their strength 

and get a model that is more robust and adaptative. 

 

III. PROPOSED METHOD 

A. Overview 

To further improve the performance of DFER, we first 

propose the improved ways to define the loss function, and then 

the 3 methods for optimization the improved Intensity Aware 

Loss are introduced.  

 

B. New Intensity Aware Loss 

To tackle the issues that have been highlighted previously, 

we use the Euclidian distance to get the difference between xt 

and xmax” 

   𝐿ூ஺
∗ ൌ – 𝑙𝑜𝑔ሺඥሺ𝑥௧

ଶ – 𝑥௠௔௫
ଶሻሻ  ൌ –  𝑙𝑜𝑔ሺ|𝑥௧ – 𝑥௠௔௫|ሻ.        

                       (3) 

We then define:  

               𝑃ூ஺
∗ ൌ  |𝑥௧ – 𝑥௠௔௫|. (4) 

If we consider a simpler model in which the prediction is binary 

between 2 emotions, we have: 

                 𝑥௧ ൅ 𝑥௠௔௫ ൌ 1, (5) 

               𝐿ூ஺
∗ ൌ  –  𝑙𝑜𝑔ሺ|2𝑥௧ –  1|ሻ. (6) 

After analyzing this new function, we get that the values of 𝐿ூ஺
∗  

are contained in [0.009; 1.699]. We can see that now the focus 

put on the low intensity samples is much bigger and the 

influence on the high intensity samples is almost null. 

Nevertheless, the influence on the low intensity samples might 

be too big and might have to be adjusted. The final loss is 

obtained by using the cross-entropy loss and 𝐿ூ஺
∗ . 

𝐿௧௢௧௔௟ ൌ  𝐿஼ா ൅ 𝛼𝐿ூ஺
∗  

where  is a hyper-parameter controlling the loss coefficients, 

which we will determine in the next subsection.  

 

C. Exponential Decrease 

The newly introduced 𝐿ூ஺
∗  has almost no influence on the 

training when the prediction is clear and therefore 

𝑥௧ 𝑎𝑛𝑑 𝑥௠௔௫  have a big gap. Nevertheless, in practice, it is 

unlikely to happen that the gap between 𝑥௧ 𝑎𝑛𝑑 𝑥௠௔௫ will be 

that big because in practice, the prediction is made between 7 

emotions. Therefore, we well reduce the impact of 𝐿ூ஺
∗  over 

the training because the model mostly learns the discriminative 

behavior at the beginning of the training, and 𝐿ூ஺
∗  will only 

cause a bias if it keeps the same influence during all the training. 

Therefore 𝐿ூ஺
∗  becomes 𝐿௙௜௡௔௟

∗ :   

                𝐿௙௜௡௔௟
∗  ൌ  𝐴 ∗ 𝑒–ఒ∗௡ ∗ 𝐿ூ஺

∗  (7) 

where A is the amplitude of the exponential,  is the parameter 

that controls the speed of the decrease, and n the current epoch 

of the training. These parameters will be determined in the next 

subsection.  
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TABLE I.  DISTRIBUTION OF THE EMOTIONS IN THE SUBSET 

Emotion Total of sample % 

Happy 98 12.47 

Sad 119 15.14 

Neutral 100 12.72 

Anger 94 11.96 

Surprise 107 13.61 

Disgust 116 14.76 

Fear 152 19.34 

 
TABLE II.  LIST OF COMBINATIONS 

Combination 
Without 

𝐿௙௜௡௔௟
∗  

With 

𝐿௙௜௡௔௟
∗  

Pretrained 

without 

𝐿௙௜௡௔௟
∗  

Pretrained 

with 

𝐿௙௜௡௔௟
∗  

a x   x 

b x  x  

c  x  x 

d  x x  

e x x   

f   x x 

 

 

Fig. 1   Evolution of WAR with α 

 

Moreover, we adopt 2 strategies for this method: the first 

one will be to have a big amplitude but also a quick decrease, 

whereas the other one will be to keep A = 1 but to decrease 

slowly the influence of the loss function. 

 

D. Pretraining 

One of the major issues of DFER is the lack of data for some 

emotions. This causes data imbalance in the dataset and 

therefore some emotions are very hard to predict. This is the 

case for “Disgust” that only has 146 samples in DFEW, so 

1.22% of the dataset. To tackle this issue, we create a subset of 

the training data containing balanced data and we pretrain a 

model for 𝑛௣௥௘௧௥௔௜௡ epochs.  

As we can see in Table I. We use almost all the samples of 

“Disgust” in the subset. This could cause an overfitting. That is 

why we will pretrain the model with 𝑛௣௥௘௧௥௔௜௡ ∈  ሼ5,10,15ሽ, 

and for each of them we will conduct the pretraining with and 

without 𝐿ூ஺
∗ .   

TABLE III. PERFORMANCES OF THE SECOND STRATEGY 

Model A λ WAR(%) 

2.1 1 0.05 69.119 

2.2 1 𝟎. 𝟎𝟑 𝟔𝟗. 𝟐𝟎𝟒 

2.3 1 0.02 69.162 

2.4 1 0.035 69.076 

2.5 3 0.05 68.135 

 
TABLE IV.  PERFORMANCES OF THE PRETRAINED MODELS 

𝒏𝒑𝒓𝒆𝒕𝒓𝒂𝒊𝒏 Use of 𝑳𝒇𝒊𝒏𝒂𝒍
∗  WAR (%) UAR (%)

5 Yes 68.862 54.324 

5 No 68.862 54.160 

10 Yes 69.247 54.399 

10 No 69.290 54.693 

15 Yes 69.204 53.927 

15 No 69.162 54.184 

 
TABLE V.  BEST PERFORMANCES OF EACH COMBINATION 

Combination Best WAR 𝜷 

a 69.418 0.2 

b 69.504 0.6 

c 69.461 0.6 

d 69.461 0.7 

e 69.717 0.4 

f 69.632 0.9 

 

E. Model Combination 

As mentioned previously, we take inspiration on the MAN 

model. We trained different models and combine them with a 

weighted average to have a more robust prediction.  

                 1 21Y Y Y   
  

      (8)    

where 1Y


 and 2Y


 are the predictions of the 2 models and 𝛽 

the parameter that controls the influence the importance of each 

model in the final prediction. We will conduct the combinations 

displayed on Table II. 

 

IV. EXPERIMENTS 

A. Experiment Details 

We use the dataset DFEW to conduct the experiments and 

the same implementation details as in [1]. Therefore, the 

images are resized in 112x112 pixel, the optimizer is SGD, with 

a batch size of 40, the learning rate equal to 0.001 which 

decrease exponentially over 80 epochs. Also, we use the 

Weighted Average Recall (WAR) and Unweighted Average 

Recall (UAR) as metrics.         

66.50%

67.00%

67.50%

68.00%

68.50%

69.00%

69.50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Influence of α on WAR(%)
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TABLE VI.  COMPARISON OF THE PERFORMANCES OF THE PROPOSED MODEL. 

Methods NE AN SU UAR WAR 

Former DFER [4] 67.52 70.03 56.43 53.69 65.70 

M3DFEL [10] 67.88 74.24 59.69 56.10 69.25 

AEN [6] 70.67 72.08 59.07 56.66 69.37 

NR-DFERNET [12] 70.03 75.09 61.60 54.21 68.19 

Resnet18 + MIDAS [5] 58.64 68.06 59.65 57.45 69.16 

IAL+GCA [1] 70.10 76.06 62.22 55.71 69.24 

Our model 72.28 75.12 67.69 55.60 69.72 

 

B. Evaluation of the Parameters 

We conduct studies on DFEW to determine the parameters 

of our final model. 

We first begin by determining α: as we can see on Fig. 1. 

we achieve the best performances for  = 0.7. We only consider 

the WAR here because what we want is the best model overall. 

On Table II. we can see the performances of the second strategy 

for the exponential decrease. The second strategy is better than 

the first one with an average WAR of 68.94% instead of 

68.54%. Therefore, we take the model 2.2, which reduces the 

impact of the loss function to 9% after 80 epochs. Next, we 

achieved the best results with the pretrained models which has 

𝑛௣௥௘௧௥௔௜௡ ൌ 10 and without the use of 𝐿௙௜௡௔௟
∗  for the UAR and 

the WAR. Nevertheless, the aim of this method is not met. 

Indeed, the performances for “Disgust” and “Fear” are worse 

than before the pretraining even though it has better 

performances overall. The accuracy for “Fear” is still 0.00% 

and decreased by 4% for “Disgust”.  

Finally, we achieve the best result for combination f which 

combines the model without 𝐿௙௜௡௔௟
∗  and the model with 𝐿௙௜௡௔௟

∗ . 

This final model has a WAR of 69.72% and a UAR of 55.60% 

which makes the best model among those presented before. 

Also, we can note that this time the performances of ‘Fear’ have 

been improved by 5.6%.  

 

C. Comparison with the Benchmark 

We compare the benchmark with our final model and the 

best pretrained model. We use the best pretrained model to 

assess the performances of the new loss function because the 

final model is obtained by combining a model that uses 𝐿௙௜௡௔௟
∗  

and one that does not use an IAL. Therefore, the prediction 

might be more accurate but it will be less clear. We filmed clips 

of ourself doing emotions with different intensities and make 

the 3 models predict the emotion. We have done happiness with 

low, mid and high intensity and also surprise with low intensity. 

We can see on Table VII. that the pretrained model has 

indeed clearer predictions on the “Happy” samples.  

TABLE VII. PREDICTION ON THE NEW SAMPLES 

 Final model Benchmark Pretrained 

Happy low 0.466 0.437 0.563 

Happy mid 0.686 0.786 0.987 

Happy high 0.583 0.618 0.857 

Surprise low 0.136 0.101 0.114 

 

On all the samples, the pretrained model have clearer 

predictions than the benchmark model. This is especially true 

for “Happy mid” with 0.987% instead of 0.786% for the 

benchmark. 

 

V. CONCLUSION 

In this work, we develop a new loss function inspired by the 

Intensity Aware Loss. This new loss function combined with 3 

optimization methods that we implemented provides a model 

that achieves great performances with an increase of 0.35% 

compared to the second-best model. Also, as intended this new 

model puts more focus on the low intensity samples than the 

original IAL and the influence on the high intensity samples is 

negligible. 

To further optimize the model, it could be useful to use a 

data augmentation method to generate samples of ‘Fear’ and 

‘Disgust’ instead of using the pretraining method. 
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