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Abstract—Identifying defects and anomalies in industrial prod-
ucts is a critical quality control task. Traditional manual in-
spection methods are slow, subjective, and error-prone. In this
work, we propose a novel zero-shot training-free approach for
automated industrial image anomaly detection using a multi-
modal machine learning pipeline, consisting of three foundation
models. Our method first uses a large language model, i.e., GPT-
3. generate text prompts describing the expected appearances
of normal and abnormal products. We then use a grounding
object detection model, called Grounding DINO, to locate the
product in the image. Finally, we compare the cropped product
image patches to the generated prompts using a zero-shot image-
text matching model, called CLIP, to identify any anomalies.
Our experiments on two datasets of industrial product images,
namely MVTec-AD and VisA, demonstrate the effectiveness of
this method, achieving high accuracy in detecting various types
of defects and anomalies without the need for model training. Our
proposed model enables efficient, scalable, and objective quality
control in industrial manufacturing settings.

Index Terms—Image Anomaly Detection, Prompt Generation,
Object Localization, Multimodal Model

I. INTRODUCTION

Ensuring product quality is a major challenge in industrial
manufacturing. Identifying defects, flaws, and anomalies in
produced goods is crucial to maintaining high standards and
avoiding costly recalls or customer dissatisfaction. Tradition-
ally, this quality control process has relied on manual visual
inspection by trained human experts. However, this approach
is inherently slow, subjective, and prone to human error [1].

Advancements in computer vision and machine learning
have enabled the development of automated industrial inspec-
tion systems [2]. These systems can rapidly analyze images of
products, detect defects, and classify anomalies in an objective
and scalable manner. A key challenge in this domain is
capturing the wide variability in the appearance of normal,
defect-free products. Conventional approaches using super-
vised learning often require large, labeled datasets containing
both normal and anomalous examples, which can be expensive
and time-consuming to collect [3].

Recent approaches, such as CLIP [4] and WinCLIP [5], have
achieved promising performance in zero-shot image anomaly
detection. However, these CLIP-based methods utilize a set
of fixed templates to generate the text prompts of normal
and abnormal products, which require human experts and the
generated text prompts are not class-specific. This results in
limited performance in industrial image anomaly detection be-
cause defects are mostly object-specific. Moreover, WinCLIP

Methods Text Prompt Generation Image Region Partition
CLIP [4] Template-generated Entire image
WinCLIP [5] Template-generated Entire image + sliding windows
Ours LLM-generated Entire image + object detector

TABLE I
COMPARISON OF TEXTUAL PROMPT GENERATION AND IMAGE FEATURE

EXTRACTION OF OUR PROPOSED METHOD TO OTHER CLIP-BASED IMAGE
ANOMALY DETECTION METHODS.

Fig. 1. Illustration of the prompt generation and object localisation-enhanced
CLIP for zero-shot anomaly detection.

[5] applies the sliding windows method to obtain multi-scale
features. However, these methods often ignore the different
sizes of industrial products.

To address these two challenges, we propose a novel mul-
timodal approach for industrial image anomaly detection that
can address these limitations, as shown in Table I. Our method
leverages large language models to automatically generate text
descriptions of the expected appearance of the product. These
prompts are then used in conjunction with an object detection
model and a zero-shot image-text matching model to identify
any deviations from the normal state. This approach enables
efficient, accurate, and salable quality control without the need
for extensive labeled training data. The illustration of our
multimodal pipeline is shown in Fig. 1.

Our contributions are summarized as follows:

• We propose to use a language model, such as GPT-3 [6],
to generate object-specific prompts for describing normal
and anomaly industrial images, instead of relying on a set
of prompts generated by fixed templates.

• We propose to use grounding DINO [7] to locate the
objects in images, effectively suppressing the background
noise and addressing multi-resolution challenges in zero-



shot image anomaly detection.
• Finally, we incorporate the two modules with pretrained

CLIP [4] to perform image anomaly detection, outper-
forming the vanilla-CLIP and the current state-of-the-art
(SOTA) baseline, i.e., WinCLIP [5], in zero-shot settings.

II. RELATED WORK

A. Image Anomaly Detection

Automated image anomaly detection has been a long-
standing challenge in computer vision, with applications in
various domains such as industrial quality control, medical
imaging, and security surveillance. Traditional approaches
have often relied on hand-crafted feature extraction and un-
supervised anomaly detection techniques, such as one-class
support vector machines (OC-SVM) and isolation forests [8].
Recently, deep learning-based methods have shown promise in
addressing the limitations of conventional anomaly detection
algorithms. These approaches typically utilize convolutional
neural networks (CNNs) or Transformer models to learn rep-
resentations of normal data and identify deviations from this
learned distribution [9]. However, a key challenge with these
supervised methods is the requirement of labeled anomaly data,
which can be costly and time-consuming to obtain in real-
world scenarios.

CLIP (Contrastive Language-Image Pretraining) [4] is a
deep learning model that is pretrained on a large-scale dataset
of image-text pairs, enabling it to learn a joint representation of
visual and textual data. This learned representation can then
be leveraged for zero-shot image anomaly detection, where
the model is not explicitly trained on anomalous samples but
rather learns to identify deviations from the normal data distri-
bution based on its general understanding of the visual world.
WinCLIP [5] extends the CLIP approach by using a sliding
window mechanism instead of analyzing the whole image. In
this method, the model is trained to learn a joint representation
between image patches and associated textual descriptions.
During inference, the model evaluates the aggregated patches
and identifies anomalies based on the discrepancy between the
visual representation and the normal data distribution.

In this paper, we also consider the use of CLIP to generate
anomaly scores for product images. However, our focus is on
improving the quality of text prompts using large language
models and enhancing the accurate localisation of products in
a CLIP-based pipeline.

B. Prompt Generation with Large Language Models

The use of large language models, such as GPT-3 [6] and
LLaMA [10], has revolutionized the field of natural language
processing, enabling numerous applications, including text
generation, question answering, and sentiment analysis [5, 6].

More recently, researchers have explored the potential of
leveraging these powerful language models for tasks beyond
pure text processing, such as multimodal learning [11] and AI
agent reasoning [12]. Our application is slightly different from
the language models used for automatic prompt generation [13]
in multimodal modeling, where the language model is tasked

with producing and enhancing the human written prompts.
These language-guided prompts have proven effective in a
variety of computer vision tasks, including image classification
and object detection [14]. However, the application of prompt
generation techniques to industrial image anomaly detection
has not been extensively explored and presents a promising
area for further research.

C. Grounding Object Detection

Object detection is a fundamental computer vision task that
involves localizing and classifying objects within an image.
Traditional object detection methods, such as Fast R-CNN [15]
and YOLO [16], have relied on supervised learning approaches
that require a large amount of annotated training data. Recent
advancements in unsupervised and weakly-supervised object
detection have aimed to reduce the need for extensive man-
ual labeling. These include techniques that leverage saliency
maps, image-level annotations, or self-supervised learning ap-
proaches to learn object representations [17].

Grounding object detection, also known as text-guided ob-
ject detection, aims to address the limitations of traditional
object detection by leveraging natural language descriptions
to guide the detection process [18]. One pioneering work
in this area is Referring Expression Comprehension (REC)
[19], which focuses on localizing an object in an image
based on a natural language description. REC models learn
to align visual and textual representations to identify the
referred object. Building upon REC, Grounded CLIP [20] and
GroundingDINO [7] extend the grounding concept to generic
object detection tasks. These methods utilize the joint repre-
sentation learning of CLIP [4] to associate textual and visual
information, enabling zero-shot or few-shot object detection
without requiring extensive object-level annotations. In our
work, we utilize the zero-shot capability of GroundingDINO to
accurately locate the objects, which are then used for anomaly
detection.

III. METHODOLOGY

Our proposed method leverages recent advancements in
large language models, object detection, and zero-shot image-
text matching to develop an efficient and scalable quality con-
trol system. The proposed method consists of three foundation
models. The core idea is to first generate textual prompts
describing the expected appearance of the product using lan-
guage models, i.e., GPT-3 [6]. Then we use a grounding object
detection model, namely Grounding DINO [7] to locate the
objects in the input image, and finally compare the located
product images to the generated prompts to compute anomaly
scores using pretrained CLIP [4].

This multimodal approach allows us to combine the
strengths of different deep learning techniques to address
the challenges of industrial image anomaly detection. The
language model-based prompt generation captures the rich do-
main knowledge required to define the expected product char-
acteristics, while the object detection and image-text matching
components enable robust and accurate anomaly identification.
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A. Prompt Generation

In the text branch, the first step in our method is to generate
two sets of textual prompts that describe the expected appear-
ance of the ”normal” and ”anomaly” product. We utilize the
pre-trained GPT-3 large language to generate these prompts.

For the text prompts, we provide the language model with
relevant information about the product, including its category.
The inputs to the language models to generate the ”normal”
prompt and ”anomaly” prompts are denoted as xnormal and
xanomaly, respectively. The model then generates two sets of
prompts that describe the desired appearance of the product,
one for the normal class, and another for the anomaly class,
as shown in Equations (1) and (2).

Pnormal = GPT3(xnormal), (1)

Panomaly = GPT3(xanomaly), (2)

where, Pnormal and Panomaly are two sets of text prompts that
describe normal and anomaly products, respectively.

B. Object Localization

The next step in our pipeline is to locate the product in the
input image. We utilize an object detection model, Grounding
DINO to identify the bounding boxes of the products within
the image. This step ensures that subsequent anomaly detection
is performed on the relevant regions of the image, rather than
the entire frame solely.

To locate the product of interest within the input image,
we leverage the Grounding DINO object detection model
[7]. GroundingDINO is a powerful Transformer-based system
that can precisely identify the bounding box coordinates of
an object given only its class name as input. We feed the
input image I and the class label c of the product into the
GroundingDINO model, which then outputs the bounding
box coordinates b = [x, y, w, h] that specify the location of
the product within the image. This allows us to extract the
relevant image patches that contain the product for further
analysis. Specifically, we crop the original image I based on
the bounding box coordinates to obtain the cropped product
image Iproduct:

Iobject = I[y : y + h, x : x+ w] (3)

As multiple bounding boxes can be located in the image, we
repeat the above steps to obtain multiple image patches that
contains the objects.

C. Zero-Shot Anomaly Detection

The final step of our method is to detect any anomalies
or defects in the cropped product image. We employ a zero-
shot image-text matching model, i.e., CLIP [4], to compare
the cropped image to the textual prompts generated in the first
step.

The image-text matching model is trained to learn a joint
embedding space between images and their corresponding

textual descriptions. This allows the model to assess the
similarity between the input image and the generated prompts,
detecting any significant discrepancies that may indicate the
presence of an anomaly.

To detect anomalies in product images, we leverage the
powerful CLIP,which encodes both text and image data into a
shared embedding space, allowing us to compute meaningful
similarities between text prompts and image content.

First, we compute the two text embeddings using CLIP -
a ”normal” prompt that describes the expected appearance of
the product, and an ”anomaly” prompt that describes potential
defects or anomalies we want to detect. The two embedding
vectors are denoted as tnormal and tanomaly, for ”normal” and
”anomaly” prompts respectively.

To compute the image embedding, for each cropped product
image Iobject, we use the pretrained CLIP to obtain the average
embedding vector of the object patches, denoted as eobject. We
also obtain the image embedding of the whole image as the
global feature, denoted as eimage. Then, the fused feature efused
is obtained by averaging the global feature eimage and the local
features eobject.

Following the extraction of the CLIP embeddings for both
normal and anomaly prompts, the next step involves determin-
ing the anomaly score for each product image. The anomaly
score quantifies the deviation of an image from the expected
norm, facilitating the identification of potential anomalies. The
anomaly score (s) is defined as the following:

s =
efused · tanomaly

efused · tanomaly + efused · tnormal
(4)

In summary, our anomaly detection method exploits the
semantic understanding capabilities of the CLIP model by
associating textual prompts with image embeddings, thereby
being enable to detect anomalies in product images based on
predefined normal and anomaly criteria.

IV. EXPERIMENTS

A. Experimental Details

We evaluate our proposed method on two industrial product
image datasets:

MVTec-AD dataset [21]: The MVTec-AD dataset is a
widely used benchmark for industrial image anomaly detec-
tion. It contains more than 5,000 high-resolution images of 15
different industrial product categories, anootated with various
types of anomalies and defects.

VisA dataset [22]: The VisA dataset is another industrial
product image dataset, containing more than 10,000 images of
20 different product categories. This dataset includes a diverse
set of anomalies and defects commonly found in industrial
manufacturing environments.

To quantify the performance of our proposed method, we
employed two widely used evaluation metrics: Area Under
the Receiver Operating Characteristic (AUROC) and Area
Under the Precision-Recall Curve (AUPR). AUROC provides
a comprehensive measure of the trade-off between the true
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Methods AUROC AUPR
SPADE [23] (1-shot) 0.810 0.906
PaDiM [24] (1-shot) 0.766 0.881
PathCore [25] (1-shot) 0.834 0.922
WinCLIP [5] (0-shot) 0.918 0.965
Ours 0.930 0.965

TABLE II
COMPARISON OF ZERO-SHOT IMAGE ANOMALY DETECTION ON THE

MVTEC-AD DATASET.

Methods AUROC AUPR
SPADE [23] (1-shot) 0.795 0.820
PaDiM [24] (1-shot) 0.628 0.683
PathCore [25] (1-shot) 0.799 0.828
WinCLIP [5] (0-shot) 0.781 0.812
Ours 0.829 0.857

TABLE III
COMPARISON OF ZERO-SHOT IMAGE ANOMALY DETECTION ON THE VISA

DATASET.

positive rate and the false positive rate, capturing the overall
classification performance. AUPR is a useful metric for evalu-
ating the performance of anomaly detection models, as it takes
into account the balance between precision and recall.

B. Comparison to State-of-the-Art Methods

Table II shows the comparison of our method with several
state-of-the-art zero-shot and few-shot image anomaly detec-
tion methods on the MVTEC-AD dataset. Our method achieves
an AUROC score of 93.0% and an AUPR score of 96.5%,
outperforming the previous best zero-shot method, WinCLIP
[5], by a significant margin of over 1 percentage point in both
metrics.

The strong performance of our approach on MVTEC-AD
demonstrates the effectiveness of our multimodal pipeline in
capturing the rich domain knowledge required to accurately
define the expected product characteristics and localize anoma-
lies in a zero-shot setting. The language model-based prompt
generation, coupled with robust object detection and zero-
shot image-text matching components, allows our system to
handle a wide variety of defect types, including surface defects,
structural anomalies, and missing parts.

Table III presents the results on the VISA dataset, which is
another challenging industrial anomaly detection benchmark.
Our method achieves an AUROC score of 82.9% and an AUPR
score of 85.7%, outperforming the current state-of-the-art zero-
shot and few-shot methods by a notable margin.

The VISA dataset consists of a diverse set of industrial prod-
ucts, including electronics, automotive parts, and consumer
goods, which require a more generalized method for anomaly
detection. Our multimodal method is able to adapt to a wider
range of product types and defect categories demonstrates its
flexibility and robustness. The language model-based prompt
generation, combined with the object detection and zero-shot
image-text matching, allows our system to effectively capture
the unique characteristics of each product and accurately
identify anomalies across the diverse VISA dataset.

Methods AUROC AUPR
Ours w/o prompt generation 0.905 0.951
Ours w/o object detection 0.913 0.953
Ours 0.930 0.965

TABLE IV
ABLATION STUDY ON THE MVTEC-AD DATASET.

Methods AUROC AUPR
Ours w/o prompt generation 0.815 0.848
Ours w/o object detection 0.792 0.821
Ours 0.829 0.857

TABLE V
ABLATION STUDY ON THE VISA DATASET.

C. Ablation Studies

Table IV shows the results of the ablation studies on the
MVTEC-AD dataset. We consider two variants of our method:
one without the prompt generation component (Ours w/o
prompt generation) and another without the object detection
component (Ours w/o object detection).

The results demonstrate the importance of both the prompt
generation and object detection components in our multimodal
pipeline. When removing the object detection, the AUROC
and AUPR scores drop by over 1 percentage point, indicating
that the language model-based prompt generation is crucial
for capturing the rich domain knowledge required for accurate
anomaly detection.

Similarly, excluding the prompt generation component leads
to a significant performance degradation, with the AUROC
and AUPR scores decreasing by more than 2 percentage
points. This highlights the importance of object-level features
in localizing anomalies in industrial products.

The full multimodal method combines the prompt gener-
ation, object detection, and zero-shot image-text matching,
achieving the best performance on the MVTEC-AD dataset,
with an AUROC of 93.0% and an AUPR of 96.5%.

The ablation study results on the VISA dataset are presented
in Table V. Similar to the MVTEC-AD analysis, we observe
a substantial drop in performance when removing either the
prompt generation or the object detection components.

Without the prompt generation, the AUROC and AUPR
scores decrease by more than 1 percentage point, demonstrat-
ing the value of the language model-based domain knowledge
in adapting to the diverse range of products and defect types
in the VISA dataset.

The impact of the object detection component is even more
pronounced, with the AUROC and AUPR scores dropping by
over 3 percentage points when this module is removed. This
underscores the critical role of the object-level features in accu-
rately identifying anomalies in the complex VISA dataset. The
full multimodal method, combining all the key components,
achieves the best performance on the VISA dataset, with an
AUROC of 82.9% and an AUPR of 85.7%.

The results of the ablation studies on both datasets highlight
the complementary nature of the prompt generation, object
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detection, and zero-shot image-text matching components in
our multimodal method. Each module contributes significantly
to the overall performance, and the synergistic integration of
these elements is crucial for achieving state-of-the-art zero-
shot industrial image anomaly detection capabilities.

V. CONCLUSION

In this work, we have proposed a comprehensive approach
for industrial anomaly detection that leverages advancements
in image anomaly detection, automatic prompt generation, and
grounded object localization. By integrating these state-of-
the-art techniques, we have developed a robust and versatile
method capable of identifying and localizing defects or irreg-
ularities in industrial settings.

Our method first employs a deep learning-based anomaly
detection model to identify deviations from the learned dis-
tribution of normal product samples. This is followed by
the use of a large language model to automatically generate
descriptive prompts that capture the salient features of the
detected anomalies. Finally, we incorporate object detection to
localize the regions of interest, providing valuable information
for targeted analysis and root cause investigation.

The experimental results on a diverse dataset of industrial
products have demonstrated the effectiveness of our method,
achieving high accuracy in anomaly detection and precise
localization of the detected issues. Furthermore, the language-
guided prompts have shown potential for improved inter-
pretability and explainability, which are crucial for industrial
applications where the ability to understand and communicate
the nature of detected anomalies is of paramount importance.

Moving forward, we aim to further explore the synergies
between these technologies, investigating novel architectures
and optimization techniques that can enhance the overall
performance and robustness of the method. Additionally, we
plan to extend the capabilities of our method to handle a wider
range of industrial scenarios and explore integration with real-
time monitoring and decision-making systems.

Overall, this work demonstrates the promising future of
industrial anomaly detection, where the combination of ad-
vanced computer vision, natural language processing, and
object localization can revolutionize the way we identify
and address quality issues in industrial manufacturing and
production processes.
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