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Abstract—Speech quality assessment serves as an important
tool for speech related applications. In this study, we propose
a non-intrusive model QUAL-Net, which is able to estimate
subjective quality scores of the target speech. QUAL-Net com-
bines acoustic features extracted by a large-scale model Whis-
per with spectral features and time-domain waveform features.
Furthermore, QUAL-Net employs a CNN-BiLSTM-Attention ar-
chitecture and introduces multi-head attention mechanism into
attention layer to enhance model’s performance. Experimental
results demonstrate that Whisper embedding features have more
powerful speech quality characterization ability than other self-
supervised learning (SSL) embedding features. Additionally, the
feature combination utilizing all three types of acoustic features
obtains optimal improvement in model performance. Further-
more, the results prove that multi-head attention has potential
to capture more key information from acoustic features than
multiplicative self-attention. We tested QUAL-Net’s performance
on the noisy and enhanced track of VoiceMOS Challenge 2023.
Compared with MOSA-Net and other speech quality assessment
models, QUAL-Net achieves significant improvement when it is
trained to estimate subjective quality scores. QUAL-Net out-
performs the top-ranked MOSA-Net+ in all evaluation metrics.
QUAL-Net uses a simpler CNN architecture compared to the
MOSA-Net+, contributing to reduction of the model complexity.

I. INTRODUCTION

In real life, accurate speech quality assessment is of great
significance to the development of speech-related applications,
such as speech enhancement, speech synthesis and hearing
aids. Listening test based on listeners is acknowledged as the
most direct and accurate method to evaluate speech quality.
The mean opinion score (MOS) is the most widely used
evaluation metric of speech quality in subjective listening
test, ranging from one to five. However, listening test is
time-consuming and costly, and requires specific listening
environments. Due to the limitation of subjective listening
test, objective metrics for speech quality assessment have been
proposed, such as perceptual evaluation of speech quality
(PESQ) [1], perceptual objective listening quality analysis
(POLQA) [2], signal-to-distortion ratio (SDR) [3] and hearing
aid speech quality index (HASQI) [4]. But these metrics based
on signal processing algorithm need clean speech with the
same frequency and time length as reference.

In recent years, researchers have developed non-intrusive
speech quality assessment models based on deep learning. By
learning features from a large amount of speech data, these
models are able to accurately predict speech quality scores

without clean reference. Deep learning-based methods can be
divided into two types on the target evaluation metrics. The
first type is to predict objective evaluation metrics. Quality-
Net [5] uses the network BiLSTM to predict scores of PESQ.
STOI-Net [6] employs a CNN-BiLSTM architecture with
attention to predict scores of objective speech intelligibility.
AMSA [7] utilizes reference-less multi-task learning (MTL)
framework to predict multiple objective speech quality and in-
telligibility scores. The second type focus on predicting scores
from subjective listening test. MOSNet [8], a CNN-BiLSTM
based model, is proposed to estimate quality of the converted
speech. MBNet [9] uses two networks to seprately predict
the mean quality score of an utterance and the difference
between the mean score and listener score, respectively. LDNet
[10] employs raw speech and listener-dependency information
of listeners as input to the model for MOS prediction. In
VoiceMOS Challenge 2022 [11], which aims to encourage the
research on development of MOS predictor for synthesized
speech, numerous innovative systems [12], [13], [14], [15]
based on self-supervised learning (SSL) models have been
proposed, yielding great improvement in the performance of
MOS prediction.

Whisper [16], a large-scale pre-trained model, has demon-
strated its advanced performance and powerful generalization
ability in various speech processing tasks. Zezario et al. [17]
utilizes Whisper to extract phonetic embedding representations
to assess HASPI scores for hearing aids, contributing to an
improvement of approximately 30% in the ranking correlation
between predicted scores and actual scores compared to the
baseline model using WavLM [18] embedding features. It is
more difficult to obtain MOS from human listening test than
from objective evaluation metrics, which results in the limited
amount of labeled speech data for training. Therefore, it is
necessary to consider the importance of each speech frame’s
information to ensure accurate evaluation. For example, there
are quiet segments in speech frames that contain redundant
information and should receive less attention. More attention
should be paid to the frames that contain more useful infor-
mation. However, self-attention mechanism overly focuses on
its own location information when encoding features, ignoring
the importance of other location information. In contrast, the
multi-head attention mechanism maps feature information to
multiple subspaces to compute location weights in parallel,



enabling the model to focus on different subspace information
at different locations, thus capturing more effective informa-
tion. Liang et al. [19] utilizes multi-head attention mechanism
to design a non-intrusive speech quality evaluation model for
hearing aids. The value of the Pearson correlation coefficient
(PCC), which describes the correlation between the predicted
quality scores and the actual quality scores is improved from
0.943 to 0.985.

Based on CNN-BiLSTM with multiplicative self-attention,
MOSA-Net [20] combines cross-domain features with embed-
ding representations from SSL model to evaluate quality and
intelligibility of the noisy speech. In VoiceMOS Challenge
2022, MOSA-Net has achieved performance close to that
of the baseline system [11]. We tested the performance of
MOSA-Net using noisy and enhanced speech dataset from
track 3 of the recent VoiceMOS Challenge 2023 [21] and
found its prediction accuracy can be further improved. Based
on the architecture of MOSA-Net, this work proposes a novel
model QUAL-Net for speech quality evaluation. SSL pre-
trained models are replaced with Whisper to extract acoustic
embedding features. QUAL-Net employs multi-head attention
mechanism instead of multiplicative self-attention. QUAL-Net
also utilizes a simpler CNN architecture with less convolution
layers than MOSA-Net. In the experiments, we first compare
the performance of Whisper-based features with other four
SSL-based features. Then, we investigate the effect of different
audio features combinations on the accuracy of quality predic-
tion. Subsequently, we analyze the impact of multi-attention
and compare it with other attention mechanism. Finally, We
compare QUAL-Net’s performance on noisy and enhanced
speech dataset with other systems.

II. QUAL-NET

The overall architecture of the proposed QUAL-Net is
presented in Fig. 1. QUAL-Net is composed of the feature
extraction module and the quality prediction module. The
specific parameters of the model are described in Table I.
In the feature extraction module, given a speech waveform
X = [x1, x2, . . . , xn, . . . , xN ], the model takes three input
branches. In the first branch, X is converted by 512-point
STFT(Short Time Fourier Transformation) with a Hamming
window of 32 ms and a hop of 16 ms to obtain a 257-
dimensional spectrogram. In the second branch, X is fed into
SincNet [22], a convolution network based on “Sinc” function,
with filter dimension of 257. The output of the SincNet is a
257-dimensional filtered time-domain waveform, namely LFB
feature. Subsequently, spectral features and LFB features are
fed into CNN. CNN has five convolution networks, with a two-
dimensional convolution layer, a batch normalization layer, a
ReLU activation function and power average pooling layer in
each network. The pooling layers calculate the p-th root of the
p-th power sum of X in the moving window. The calculation
process is described as follows, where the value of p is 4:

f(x) = p

√∑
x∈X

xp (1)

Fig. 1. Architecture of the proposed QUAL-Net

In the third branch, X is first transformed into a spectral
signal by STFT, the frequency axis is divided into a series of
Mel frequency bands, and then the energy within each Mel
frequency band is summed and logarithmized to obtain the
log mel-spectrogram M . Then, M is fed into Whisper pre-
trained model to obtain 512-dimensional Whisper embedding
features WE. A fully connected layer is utilized to ensure
that WE have the same feature dimension as deep frame-
level features and WE are concatenated with deep frame-level
features extracted by CNN. The combined features are mapped
into quality prediction module to predict quality scores.

Quality prediction module consists of a BiLSTM, a multi-
head attention layer, a linear layer and an adaptive average
pooling function. The input features are first processed by
BiLSTM with 128 nodes. BiLSTM comprises a forward LSTM
and a backward LSTM, which models temporal information of
feature sequences using backward and forward propagation,
contributing to effective leveraging context information of
long time sequences. BiLSTM is utilized to process combined
features frame-by-frame and capture contextual dependencies
in acoustic features. Multi-head attention layer with 8 attention
heads, is applied to learn different attention weights based on
correlations within combined features, enabling the model to
focus on more effective feature information to ensure accurate
quality prediction. Then, a linear layer with one node is utilized



TABLE I
PARAMETERS OF THE QUAL-NET

Name Layer Parameter Size of output

Conv1 32,3×3 32×N×257

Batch Normaliztion 32 32×N×257

ReLU / 32×N×257

LPPool2d 4,1×4 32×N×64

Conv2 32,3×3 32×N×64

Conv3 64,3×3 64×N×64

Batch Normaliztion 64 64×N×64

ReLU / 64×N×64

LPPool2d 4,1×4 64×N×16

Conv4 64,3×3 64×N×16

Conv5 128,3×3 128×N×16

Batch Normaliztion 128 128×N×16

ReLU / 128×N×16

LPPool2d 4,1×4 128×N×4

CNN

Reshape / N×512

BiLSTM 128 N×256

Dense 128 N×128

Multi-Head Attention 128,heads=8 N×128

Dense 1 1×128

Score

Prediction

Module

Global Average 1 1×1

to generate frame-level scores. The number of frames of a
speech utterance is the sum of frame numbers of the deep
frame-level features and WE. The output of linear layer is
processed through global average pooling to calculate the final
quality score.

Moreover, the model integrates both frame-level quality
scores and utterance-level quality scores into the loss function
for training. The loss function is described as follows:

Lquality =
1

N

N∑
n=1

[(
Qn − Q̂n

)2

+
αQ

Fu

Fu∑
l=1

(Qn − q̂nl)
2

]
(2)

where Qn represents actual Quality scores of the n-th training
utterance. Q̂n represents the predicted Quality scores of the n-
th training utterance. The total number of training utterances is
denoted by N . Fu represents the total number of frames in the
n-th training utterance, which is the frame number of combined
feature. q̂nl is the predicted frame-level scores of the l-th frame
of the n-th training utterance. For the n-th training utterance,
there are Fu predicted frame-level scores. The weights between
utterance-level and frame-level losses are determined by αQ.

III. EXPERIMENTS

A. Dataset

The dataset in this experiment is from the noisy and en-
hanced track of VoiceMOS Challenge 2023 [21]. Training
data is based on TMHINT-QI [23] dataset, a Mandarin corpus
containing 24,408 ten-word utterances. It contains totally 8201

samples, including 360 clean speech samples, 1874 noisy
speech samples with four types of noises (babble, street, pink,
and white) at four signal-to-noise ratio (SNR) levels (-2, 0, 2,
and 5) and 5967 enhanced speech samples derived from five
speech enhancement systems: KLT, MMSE, FCN, DDAE, and
Transformer. 226 listeners were recruited to take the listening
test and predicted speech quality scores on a range from 1 to
5. The mean of the subjective quality scores for each utterance
was used as the actual score of the speech.

A seperate dataset TMHINT-QI (S) was created as test set,
containing 360 noisy samples with the same noise type as those
in training data and 1600 enhanced samples processed by five
speech enhancement models: MMSE, FCN, Trans, DEMUCS,
and CMGAN, including two unseen enhancement systems. A
total of 110 listeners were recruited for listening test of the
test set.

B. Evaluation Metrics

To evaluate the performance of the model, system-level and
utterance-level mean squared error (MSE), Linear Correlation
Coefficient (LCC) and Spearman Rank Correlation Coefficient
(SRCC) are used. MSE indicates the difference between pre-
dicted scores and actual quality scores. LCC describes the
linear correlation between predicted scores and actual scores.
SRCC represents the rank correlation between predicted scores
and actual scores. Since it is more useful for quality assessment
models to predict the ranks of systems accurately than to
predict actual quality scores, we use system-level SRCC as
the primary evaluation metric for model performance.

C. Model Training

In the training phase of the model, we use Adam optimizer
with initial learning rate of 0.001 and adopt a dynamic learning
rate adjustment strategy. If validation loss does not decrease
after 10 training iteration rounds, the learning rate of Adam
optimizer decreased by a factor of 10 with the minimum
learning rate of 0.000001 to help the model find the optimal
parameters better as well as to avoid overfitting. Totally 50
epochs are trained with batch size of 1. 90% of training data are
used for training and 10% for validation. All speech samples
are in 16 kHz.

D. Comparison of Different Embedding Features

In the first experiment, we aim to compare different speech
pre-trained models and select the optimal pre-trained model as
feature extractor. Five pre-trained models, BEATs [24], Hubert
[25], XLSR [26], WavLM, and Whisper are employed to ex-
tract speech embedding features, where the feature dimensions
extracted by the Hubert, XLSR, WavLM, and Whisper models
are 1024, while the feature dimension of the BEATs model is
768.

As presented in Table II, Hubert, WavLM, and Whisper
embedding features have respectively high correlation with
speech quality. The models using BEATs and XLSR em-
bedding features achieve low prediction accuracy, particularly



TABLE II
PERFORMANCE OF QUAL-NET WITH DIFFERENT EMBEDDING FEATURES

Embedding Feature
System-level Utterance-level

LCC SRCC MSE LCC SRCC MSE

BEATs [24] 0.584 0.582 0.792 0.537 0.505 1.090

Hubert [25] 0.961 0.955 0.067 0.793 0.753 0.352

XLSR [26] 0.888 0.883 0.257 0.721 0.693 0.586

WavLM [18] 0.964 0.962 0.063 0.794 0.757 0.348

Whisper [16] 0.961 0.966 0.053 0.807 0.780 0.323

BEATs embedding feature shows significantly weaker correla-
tion with speech quality than other features. The model with
Whisper embedding features achieves the best performance
in all evaluation metrics except for the system-level LCC,
which is slightly lower than that of the WavLM. Based on
training data amount of labeled speech of 680,000 hours
and training parameters of large scale, Whisper reveals its
robustness in audio feature extraction. Experimental results
demonstrate the benefits of utilizing Whisper to deploy quality
prediction model.

E. Comparison of Different Feature Combinations

In the second experiment, we investigate the effect of dif-
ferent acoustic features on the prediction performance through
ablation experiment. As shown in Table III, five different
feature combinations are employed, where STFT represents
spectral features, LFB represents waveform features after
SincNet filter processing and WE represents the embedding
representations extracted by Whisper. Comparing combination
1, combination 2 and combination 5, the Whisper embedding
features significantly outperform STFT+LFB features in both
system-level and utterance-level evaluations, indicating that
the Whisper embedding features play a major role in quality
prediction. Comparing combination 3 and combination 4, with
the same embedding features, model using spectral features has
slightly better performance than that of using LFB features. It
indicates that although LFB features retain the raw waveform
more completely, spectral features which retain the speech
phase information and the short-time transform features can
obtain more useful phonetics information. The performances of
combination 3 and combination 4 have been very close to that
of the combination 5. It further demonstrates that compared
with WE, spectral features and LFB features do not have a
large magnitude of enhancement on prediction performance of
the model.

Combination 5 achieves the most accurate quality predic-
tion, demonstrating the effectiveness of combining different
acoustic features for speech quality estimation.

TABLE III
PERFORMANCE OF QUAL-NET WITH DIFFERENT FEATURES

COMBINATIONS

Combination Feature
System-level Utterance-level

LCC SRCC MSE LCC SRCC MSE

1 STFT+LFB 0.808 0.796 0.227 0.638 0.572 0.599

2 WE 0.926 0.921 0.106 0.786 0.752 0.374

3 STFT+WE 0.954 0.954 0.058 0.808 0.777 0.323

4 LFB+WE 0.950 0.949 0.066 0.803 0.773 0.327

5 STFT+LFB+WE 0.961 0.966 0.053 0.807 0.780 0.323

F. Impact of Multi-Head Attention

In the third experiment, to investigate the impact of multi-
head attention in the model, we compare QUAL-Net (No-
ATT), which does not have attention layer with QUAL-Net
(Mul-ATT) and QUAL-Net (Multi-Head-ATT). It needs to be
clarified that Mul-ATT denotes that the model uses the self-
attention layer which employs multiplicative attention and
Multi-Head-ATT denotes that the model uses multi-head at-
tention layer.

As present in Table IV, the models with attention layer
achieve more accurate quality prediction than the model
without that. Compared with QUAL-Net (No-ATT), QUAL-
Net (Multi-Head-ATT) improves on system-level SRCC by
0.051. Additionally, QUAL-Net (Multi-Head-ATT) outper-
forms QUAL-Net (Mul-ATT) in all evaluation metrics, improv-
ing on system-level SRCC by 0.022. It confirms that multi-
head attention enables the model to focus on more useful
information in time frames and effectively capture contextual
association of speech, thus enhancing model’s performance.
Multi-head attention also exhibits superior ability to process
frame-level feature of speech over multiplicative self-attention.

G. Comparison with Other Systems

In this experiment, we compare QUAL-Net with other
speech quality evaluation models on the noisy and enhanced
speech dataset of VoiceMOS Challenge 2023. Table V ex-
hibits the performance of different systems. MOS-SSL [12]
uses finetuned SSL models to predict MOS and LE-SSL-
MOS [27] constructs a MOS predictor based on SSL models
and the scores of individual listener augmentation branches,
introducing new unsupervised metrics to improve prediction
accuracy. UTMOS [13] builds strong and weak learners based
on SSL models and classical machine learning algorithms
to predict MOS. It is noted that MOSA-Net [20] serves as
the baseline model of our system, and its enhanced version
MOSA-Net+ [28] achieves top-ranked performance on the
noisy and enhanced track of VoiceMOS Challenge 2023.



TABLE IV
PERFORMANCE OF QUAL-NET WITH DIFFERENT ATTENTION LAYER

Model
System-level Utterance-level

LCC SRCC MSE LCC SRCC MSE

QUAL-Net (No-ATT) 0.920 0.915 0.243 0.771 0.742 0.521

QUAL-Net (Mul-ATT) 0.947 0.944 0.179 0.786 0.758 0.454

QUAL-Net (Multi-Head-ATT) 0.961 0.966 0.053 0.807 0.780 0.323

TABLE V
PERFORMANCE OF ALL SYSTEMS ON ENHANCED AND NOISY SPEECH

TRACK OF VOICEMOS CHALLENGE 2023

System
System-level Utterance-level

LCC SRCC MSE LCC SRCC MSE

MOS-SSL [12] 0.637 0.487 2.986 0.518 0.403 3.356

UTMOS [13] 0.769 0.621 1.763 0.611 0.477 2.216

LE-SSL-MOS [27] 0.769 0.749 0.635 0.684 0.636 0.688

MOSA-Net [20] 0.954 0.941 0.067 0.781 0.749 0.358

MOSA-Net+ [28] 0.952 0.956 0.082 0.803 0.780 0.343

QUAL-Net 0.961 0.966 0.053 0.807 0.780 0.323

Our system QUAL-Net yields notable improvement in the
performance of MOS prediction, outperforming all the com-
pared systems including the top-ranked model MOSA-Net+.
Compared with MOSA-Net, our system improves system-
level SRCC from 0.941 to 0.966. In comparison to MOSA-
Net+, our system improves system-level SRCC from 0.956 to
0.966. It demonstrates the advantages of creating multi-domain
acoustic features using Whisper model and adopting multi-
head attention for enhancing model’s speech quality evaluation
performance. It is worth noting that although UTMOS achieves
top-ranked performance in VoiceMOS Challenge 2022, its
performance on the noisy and enhanced dataset is much lower
than that of QUAL-Net and MOSA-Net, which to some extent
reflects the difficulty in realizing the quality assessment of
multi-domain speech dataset.

IV. CONCLUSIONS

This study proposes a non-intrusive speech quality assess-
ment model QUAL-Net. QUAL-Net incorporates pre-trained
model Whisper into feature extraction and introduces multi-
head attention mechanism to quality prediction. Experimental
results demonstrate that Whisper embedding features can cap-
ture more effective acoustic information compared to other

SSL-based features. Additionally, ablation experiment con-
firms that Whisper embedding features play a major role in
speech quality evaluation. The model using spectral features,
time-domain waveform features and Whisper features achieves
the optimal performance. Furthermore, multi-head attention
has superior performance over multiplicative self-attention and
further improves prediction accuracy of the model. QUAL-
Net achieves a notable improvement over MOSA-Net and
outperforms MOSA-Net+ and other speech quality assessment
models. Since QUAL-Net uses CNN architecture with less
number of convolution layers than MOSA-Net+, it achieves
better performance with simpler model structure. In future
work, we plan to test the performance of QUAL-Net on
different types of datasets and explore QUAL-Net’s potential
for semi-supervised speech quality assessment.
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