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Abstract—This paper proposes a method for designing directed
graph (digraph) filters through a dictionary learning approach.
Practical digraph filtering methods have not yet been established
because of the difficulties posed by asymmetry of the adja-
cency matrix of a digraph. Augmented graph Fourier transform
(AuGFT), proposed by Kitamura et al., defines a new graph
Laplacian and extends the conventional graph Fourier transform
(GFT) for undirected graph signals to directed ones. However,
challenges remain in filter design through AuGFT, particularly
in determining the skew intensity parameters. Therefore, this
study aims to establish a design method for digraph filters with
AuGFT. Filters are parameterized with AuGFT, and parameter
optimization is performed using a dictionary learning technique.
To verify the effectiveness of the proposed method, experimental
results of digraph filtering are shown for temperature data
of contiguous US and the GSP-traffic-dataset. Compared with
undirected graph filtering, the proposed method is shown to have
high steerability in designing digraph filters.

I. INTRODUCTION

Graph signal processing (GSP) is theoretical framework for
signal processing based on the analysis of the graph spectral
properties, where signal domain is defined on the vertices
[1], [2]. When the graph structure is known, graph signal
processing provides an efficient means of storing, transmitting,
and analyzing a variety of graph signals. Graphs can reflect
known or estimated connectivity as a prior knowledge in target
models. The theory and algorithms of graph signal processing
have primarily been designed for undirected graphs, where
the connectivity information between vertices is represented
by an adjacency matrix. The graph Laplacian, being a graph
operator, is a symmetric matrix and can thus be diagonalizable
by an orthonormal matrix. Such orthonormal matrices are
used as a basis for the graph Fourier transform (GFT). The
eigenvalues of graph operators, known as graph frequencies,
are non-negative real numbers, allowing the spectrum corre-
sponding to the frequencies to be sorted according to their
magnitudes. Consequently, filtering in the spectral domain is
realized and utilized as the primary operation in undirected
graph signal processing. However, real-world networks, which
often include directional information, are difficult to represent
using only connectivity information and are instead represented
using digraphs. The graph operators of digraphs, however, are
generally not symmetric, offering no guarantee that the graph
operator can be diagonalized or that its eigenvalues are real
[3], [4]. Therefore, unlike with undirected graphs, defining
GFT and graph frequency for digraphs poses significant chal-
lenges.

To address these challenges, various approaches have been
proposed. For example, studies using symmetric components
of graph operators [4], [5], studies on minimizing spectral vari-
ance [6], studies on constructing new GFT by applying Jordan
decomposition [7], [8] or singular value decomposition [9]
to the adjacency matrix, and studies on symmetrization of
adjacency matrix [10]. However, many of the existing methods
are not easy to apply to GSP, which is based on filtering in
the spectral domain.

In [11], Furutani et al. redefined graph operators for digraphs
as Hermitian symmetric matrices by embedding the directional
information into the imaginary part of the graph operator. This
approach enables the sorting of graph frequency as a real
number and realizes filtering in the graph frequency domain.
However, a challenge arises with the Hermite-Laplacian filter-
ing technique: it practically produces complex-valued outputs
for real-valued inputs.

In order to solve the conventional digraph filtering problem,
in the article [12], Kitamura et al. proposed the augmented
GFT (AuGFT) 1. AuGFT generalizes the traditional GFT by
splitting the graph Laplacian into the symmetric and skew-
symmetric components and separately applying the canonical
decompositions so that a redundant real GFT is defined for
a digraph. AuGFT enables practical real-valued filtering for
digraph signals. This generalized method ensures real-valued
outputs with filters designed under little constraint. In parallel
to this study, Kwak et al. proposed to apply polar decomposi-
tion to the adjacency matrix and provides a new interpretable
filtering technique in the vertex domain [13]. The method in
[13] decomposes the operators into product forms, while our
proposed method decomposes them into sum forms. Although
both of them can realize practical real filters, in this study, we
adopt the latter as the base, which can directly utilize existing
filters for undirected graph signals.

Despite the advantage of AuGFT, there remain challenges
to establish practical procedures for designing filter efficiently.
To further advance the method, we propose a novel filter
design method employing dictionary learning technique. We
demonstrate its effectiveness through comparative analysis
with some conventional filters for undirected graph signals.

The organization of this paper is as follows. In Section 2,
we review digraph signal processing. In Section 3, we pro-
pose a design method of digraph filters using a dictionary

1https://github.com/msiplab/AuGFT



learning technique. The effectiveness of our proposed method
is validated in Section 4. Finally, Section 5 concludes our
contributions.

II. REVIEW OF DIGRAPH SIGNAL PROCESSING

In this section, we introduce graph adjacency matrices and
the Hermite symmetric graph Laplacian [12], as a graph oper-
ator that plays an important role in digraph signal processing.
We also introduce the AuGFT based on them. Note here that
the definition of AuGFT is generalized from that in the article
[12] so that design parameters can be introduced to control the
skew intensities.

A. Review of Digraph

Let us assume a finite digraph G = (V,A), where V ⊂ N0

is a set of vertices, A = (am,n) ∈ [0,∞)N×N is an adjacency
matrix, and am,n is a weight from vertex m to vertex n. If
am,n = an,m holds for all (m,n) ∈ V×V , then G is undirected
and the adjacency matrix A is symmetric, i.e., A⊺ = A, where
the superscript ⊺ denotes the transposition. Unless otherwise
stated, N = |V| < ∞ denotes the number of vertices. Since
the adjacency matrix A of a digraph G is not symmetric, we
use the Hermitian adjacency matrix C defined as

C := A+ + jA−, (1)

which is symmteric and reflects the vertice connectivity of
digraph where A+ := 1

2 (A+A⊺) and A− := 1
2 (A−A⊺).

B. Para-graph Laplacian

The para-graph Laplacian L is defined by symmetric real
part and skew-symmetric imaginary part as

L = D−C = (D−A+)− jA−, (2)

where D is the degree matrix of C defined as the diagonal
matrix having the m-th diagonal element:

dm,m :=
∑

n∈V\{m}

√
cm,ncn,m, m ∈ V. (3)

Since C is Hermitian symmetric, cn,m = c̄m,n and
cn,mcm,n = c̄m,ncm,n = |cm,n|2 hold. This leads to dm,m =∑

n∈V\{m} |cm,n|. For an undirected graph, |cm,n| = am,n.
We further have a decomposition

L = UΛU⊺ + jQΣQ⊺ (4)

from canonical forms for real symmetric and real skew-
symmetric matrices [14, Corollary 2.5.11(b)], where U ∈
RN×N is an orthonormal matrix, Q ∈ RN×r is a matrix
consisting of r orthonormal columns,

Λ = diag(λ0, λ1, · · · , λN−1) (5)

with λn ∈ [0,∞), λn ≤ λm for n < m, and

Σ = s0

(
0 1
−1 0

)
⊕ s1

(
0 1
−1 0

)
⊕ · · · s r

2−1

(
0 1
−1 0

)
(6)
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x̃− ỹ−
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Fig. 1: Digraph filtering y = Hx, where U ∈ RN×N and Λ ∈
RN×N are the orthonomal matrix and diagonal matrix obtained
by eigenvalue decomposition of ℜ{L}, and Q ∈ RN×r and
Σ ∈ Rr×r are the submatrices of the orthonormal matrix and
block diagonal matrix obtained by canonical decomposition of
ℑ{L}, respectively, where L is a para-graph Laplacian, r is the
rank of ℑ{L}, h+(·) and h−(·) are para-graph frequency and
skew intensity responses respectively. Note that r = 0 for an
undirected graph. Therefore, AuGFT reduces to the ordinary
GFT. The top channel takes the orthogonal complement space
of span(Q) into account.

with sn ∈ [0,∞), sn ≥ sm for n < m, and r denotes the rank
of ℑ{L} = −A−. The symbol ⊕ denotes the direct sum of
matrices to construct a block diagonal matrix.

L is a generalization of the conventional graph Laplacian
and satisfies the Hermitian symmetric property, i.e., LH = L,
and

[Lx]m =
∑

n∈V\{m}
|cm,n| · (xm − ej∠cm,nxn),m ∈ V, (7)

where the superscript H denotes the Hermitian transposition
and [·]m denotes the m-th element. The para-graph Laplacian
quadratic form as a measure of graph signal variation (GSV)
is obtained by

∆L(x) := xHLx =

N−1∑

m=0

N−1∑

n=m+1

|cm,n| · |xm − ej∠cm,nxn|2,

(8)
where x ∈ CN (or x ∈ RN ).

C. Augmented Graph Fourier transform (AuGFT)

Let xn ∈ R be a signal at vertex n. A digraph signal {xn}n
is denoted by x = (x0, x1, · · · , xN−1)

⊺ ∈ RN . The AuGFT
and its inverse are defined by

x̃ = Fαx :=
(
(I− αQQ⊺)U

√
α(2− α)Q

)⊺
x, (9)

x = F+
α x̃ :=

(
(I− αQQ⊺)U

√
α(2− α)Q

)
x̃, (10)

where x̃ ∈ RN+r and r = rank(ℑ{L}). α ∈ [0, 1] is a
parameter that controls the intensity of the skew components.

D. Digraph filtering

We realize practical digraph filtering

y = Hx (11)

for digraph signal x, where y ∈ RN is the filtered digraph
signal, and H ∈ RN×N is a vertex-domain filter through
AuGFT. The graph-frequencies {λn}n and the skew intensities
{sn}n are all real and non-negative.
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Fig. 1 shows the procedure of the digraph filtering. The
vertex-domain filter H in (11) is formulated as

H = F+
α (h+(Λ)⊕ h−(Σ))Fα, (12)

where

h+(Λ) := diag (h+(λ0), h+(λ1), · · · , h+(λN−1)) , (13)

h−(Σ) := h−(s0)

(
0 1
−1 0

)
⊕ h−(s1)

(
0 1
−1 0

)
⊕ · · ·

· · · ⊕ h−(s r
2−1)

(
0 1
−1 0

)
. (14)

H is always real if we design both of h+(·) and h−(·) to be
real, thus the output y is guaranteed to be real for a real input
x.

III. DIGRAPH DICTIONARY LEARNING

The innovative AuGFT has made it possible to design
digraph filters by decomposes them into responses on graph
frequencies {λn}n and skew intensities {sn}n, however chal-
lenges remain in how to design filters or choose parameters,
especially in determining the skew intensity responses. In
this section, we propose to parameterize filters with α of
AuGFT and optimize the parameter with a dictionary learning
technique. We consider constructing a P -channel graph filter
bank (GFB) G =

[
H0 H1 · · · HP−1

]
through dictio-

nary learning. Learning a P -channel GFB from graph signals
can be reduced to solving the following optimization problem:

{Ĝ, X̂} = arg min
{G,X}

1

2
∥V −GX∥2F + βR(X), (15)

where V is a data matrix of graph signals, X is a coefficient
matrix for G, β ∈ [0,∞) is the regularization parameter,
R(X) is regularizer imposed to the coefficient matrix and ∥·∥F
denotes the Frobenius norm.

A. Regularizer
Various types of regularizer R have been studied in the field

of signal procesing. For the purpose of dictionary learning,
we propose to adopt a typical regularizer, the ℓ1-norm of the
coefficient matrix, as follows

R(X) =
∑

k

∥xk∥1, (16)

where xk is the k-th column vector of X.

B. Optimization
We consider designing filters through (15) and (16). The

minimization problem is alternatively iterated with the fol-
lowing coefficient sparsification problem (Coefficient update)
and the dictionary optimization problem (Dictionary update)
to obtain optimally learned digraph filters.

• Coefficient update step: given dictionary Gθ̂ in the initial
state or trained at the previous step, obtain the optimal
coefficients X̂ such that

X̂ = arg min
X

1

2
∥V −Gθ̂X∥2F + β

∑

k

∥xk∥1, (17)

TABLE I: First experiment setup in IV-A

Number of data for dictionary learning 470
Filter for h+ Half cosine

Number of filters P 4
Regularization parameter β 0.5

Standard derivation σ 5

where Gθ̂ is the GFB determined by design parameter θ̂.

• Dictionary update step: given the previous optimal coef-
ficient X̂, learn the design parameter θ of the dictionary
such that

θ̂ = arg min
θ

1

2
∥V −GθX̂∥2F. (18)

IV. PERFORMANCE EVALUATION

In this section, we conducted two experiments involving de-
noising filter design to evaluate the feasibility of the proposed
dictionary learning method. These experiments entailed adding
noise w to a digraph signal u and subsequently attempting to
denoise the observation

v = u+w (19)

through sparse modeling. The noise is assumed to be additive
white Gaussian noise (AWGN) with a standard deviation of σ.

Let hp,+(·), hp,−(·) and αp be the frequency response,
skew response and AuGFT parameter α of the p-th filter
Hp, respectively. In the following experiments, {hp,+(·)} is
determined as a half cosine GFB [15], which is developed for
an undirected graph signal, and {hp,−(·)} is fixed to a set
of the identities, i.e., hp,−(s) = s. We control the skewing
parameter αp for each channel independently. That is, {αp}
are the design parameters of the following GFBs.

We examine the feasibility of designing filters. To validate
the performance of the designed digraph filters, we evaluated
the RMSE of the denoised graph signal and the GSV in (8),
compared them to the undirected graph case (αp = 0). The
coefficient update, involving the ℓ1-norm regularization, was
addressed with the iterative shrinkage-thresholding algorithm
(ISTA) for the coefficient update step, and we employed
MATLAB’s fmincon for the dictionary update step. In these
experiments, the adjacency matrix weights are set as am,n = 1
for the edge m → n.

A. Experiment for Digraph of Contiguous United States

First, we utilized a digraph with 48 US states (excluding
Alaska and Hawaii) as vertices and monthly average temper-
ature data as graph signals for each state. The edges in the
graph were connected from lower to higher latitude. Fig. 2
shows the temperature signal on the directed graph of the
continuous US used in this experiment. Generally, states closer
to the equator, i.e. at lower latitudes, have higher average
temperatures. Therefore, we think it is reasonable to assign
directed vertices based on the latitude of the state to capture
temperature flow. The experimental setup is detailed in Table I.
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(a) (b)

Fig. 2: (a) Graph signal of the average temperature in Fahren-
heit of March 2024 in the directed contiguous US. This graph
has 48 US states excluding Alaska and Hawaii as vertices.
(b) Example of noisy graph signal (RMSE: 5.056).

TABLE II: Cities used for the experiment and their character-
istics

City Country vertices Total Edges Directed Edges
Sakarya Turkey 103 150 114

Chon Buri Thailand 108 140 112
Chaoyang

(Guangdong) China 108 206 88

Kanpur India 117 208 98

B. Experiment for GSP-Traffic-Dataset

Second, we utilized the GSP-Traffic-Dataset2 [16]. The
dataset includes virtual measurements of traffic volumes in
465 cities worldwide, with the graph representing an actual
road network with intersections as vertices and roads as edges.
Signals in the dataset represent the total number of vehicles
passing through intersections over 500 seconds, obtained by
simulations. The dataset provides time series data from a
50,000-second simulation.

Given that real roads include one-way streets, the graph is
directed, with over 100 vertices in the graph. Consequently,
we can conduct the experiments with a graph that has more
vertices than the first experiment and, unlike an arborescence,
has partially directed edges.

We employed data from four cities for the experiment. The
cities used and their characteristics are presented in Table II.
We utilized the first 99 data for dictionary learning and the rest
for validation. The experimental setup is detailed in Table III.

2https://github.com/rukumagai/GSP-Traffic-Dataset

TABLE III: Second experiment setup in IV-B

Filter for h+ Half cosine
Number of filters P 6

Regularization parameter β 0.2
Standard derivation σ 5

TABLE IV: Average of 100 simulation results in the first
experiment of IV-A

RMSE GSV
original data - 93113
noisy data 4.972 96720

undirected graph filtered 4.968 96290
digraph filtered 4.961 95466

TABLE V: Average of 100 simulation results for each city in
the second experiment in IV-B

(a) Sakarya, Turkey
RMSE GSV

original data - 62929
noisy data 5.002 67783

undirected graph filtered 4.816 62280
digraph filtered 4.810 61664

(b) Chon Buri, Thailand
RMSE GSV

original data - 38553
noisy data 4.999 42936

undirected graph filtered 4.708 37654
digraph filtered 4.703 37323

(c) Chaoyang, China
RMSE GSV

original data - 50338
noisy data 4.999 56923

undirected graph filtered 4.909 53300
digraph filtered 4.866 51945

(d) Kanpur, India
RMSE GSV

original data - 45399
noisy data 4.990 51618

undirected graph filtered 4.842 48646
digraph filtered 4.800 47207

C. Experimental results

The results of the first experiment in IV-A and the second
experiment in IV-B are presented in Tables IV and V, respec-
tively. These tables show the average of 100 trial simulations in
RMSE and GSV for the original data u, noisy data v, denoised
data ûu through undirected graph filters, and denoised data ûd

through the proposed digraph filteres.

D. Discussion

In both experiments, compared to the undirected graph filters
with αp = 0, the RMSEs of our proposal were improved, and
the GSV decreased. The results show that digraph denoising
filters can be effectively realized by controlling the intensity of
the skew components on the graphs. An example of the results
from the second experiment in IV-B is shown in Table VI. The
graph signals are more smoothed with its adjacent vertex and
vertices with directed edges show improvement in the results.

V. CONCLUSION

In this paper, we proposed a method for designing di-
graph filters, which ensure real-valued outputs for real-valued
inputs, through dictionary learning techniques with AuGFT.
We realized the digraph filter design by optimizing GFB
parameterized by skewing parameters. The proposed method
overcomes the challenges in the conventional digraph signal
processing and allows for the design of appropriate filters
for digraph signals. The effectiveness of the proposed method
was verified through experiments with temperature data of the
contiguous US and traffic volume data in four cities provided
by GSP-Traffic-Dataset. The introduction of control of the
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TABLE VI: Examples of traffic volume graph signal on road for each city. The ‘original’ column gives the graph signal u used
for validation. The ‘noise’ column gives w = u− v, the ‘undirected graph filtered’ column gives u − ûu, and the ‘digraph
filtered’ column gives u − ûd. The directed edges, expressed by arrows, represent one-way streets, and the undirected edges
represent two-way streets.

original
u

noise
w = u− v

undirected graph filtered
u− ûu

directed graph filtered
u− ûd

Sakarya,
Turkey

Chon Buri,
Thailand

Chaoyang,
China

Kanpur,
India

skewing parameter confirmed that effective digraph filters can
be designed comparing to undirected graph filters. Future work
includes further refinement in the filter design method by
extending the parameterization in AuGFT domain to design
a more flexible GFB and exploring applications to other types
of digraph signals.
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