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Abstract—Time-domain methods for temporal and spatial cor-
relation estimation often face challenges due to background noise
and environmental factors, leading to low time delay resolution.
This limitation reduces the accuracy of underwater acoustic source
localization and depth estimation. To tackle this issue, this paper
introduces a statistical approach to estimate temporal and spatial
correlations in ship-radiated noise. Using random matrix theory
(RMT), we employ a factor model to determine the number of
dynamic factors and the binary correlation structure of residuals
from ship-radiated noise. This technique effectively captures the
essential characteristics of underwater acoustic signal dynamics.
Our proposed RMT-based modeling approach provides a robust
analysis of ship-radiated noise which exhibits a wide frequency
band and non-Gaussian nature. Results show that this method is
highly sensitive and reliable in detecting variations in the temporal
and spatial correlation of ship-radiated noise. The proposed
method provides a novel insight into improving temporal and
spatial correlation estimation and enhancing situation awareness
in underwater environments.

I. INTRODUCTION

The underwater noise received by passive sonar includes
ambient noise, ship-radiated noise from vessels (ships, sub-
marines, et al.), and self-noise originating from the vessel
machinery. Ship-radiated noise, in particular, is generated by
the vibration of the propeller and various mechanical parts of
the vessel during navigation. These vibrations radiate sound
waves through the ship’s hull, converting them into underwater
acoustic waves. As ship-radiated noise propagates through
the complex marine environment, it exhibits non-stationary,
non-Gaussian, and nonlinear characteristics, which make it
challenging for traditional Gaussian-based methods to analyze
the underwater acoustic signal effectively. Therefore, this paper
investigates a statistical method for the analysis of ship-radiated
noise with a wide frequency band and non-Gaussian.

Temporal and spatial correlations in underwater noise arise
from the pathways of propagation and various noise sources[1].
Temporal correlation primarily results from the multipath
propagation of underwater radiated noise. Variations in the
ocean’s physical properties, such as temperature, salinity, and
pressure, affect the propagation process through mechanisms
like refraction, reflection, and scattering. Environmental factors
such as water depth, seafloor topography, and marine life

further influence noise propagation. Additionally, ocean surface
phenomena like breaking waves, wind, and rain also impact
the propagation of underwater noise[1][2]. When a vessel
emits underwater signals, the scattered and direct waves create
multiple propagation paths. As a result, sound waves reach
the receiver at different times and intensities. The echoes
from these propagation paths may overlap and mix, causing
the received signal to differ from the original in terms of
time delay and amplitude. Consequently, the multi-path effect
significantly influences the temporal correlation of underwater
acoustic signals. Additionally, the interaction between various
mechanical noises from the vessel and background noise further
affects the correlative characteristics of ship-radiated noise.

The spatial correlation of ship-radiated noise is primarily
generated by mutual interference between hydrophones in the
underwater noise field. Studies have shown that in an underwater
spatially inhomogeneous and anisotropic noise field, refraction
can significantly impact spatial correlation performance based
on receiver locations. This is because ship noise sources are
distributed near the surface and exhibit stratification[2][3]. The
relative distance between receivers also affects the spatial
correlation of underwater signals[3]. Another critical factor
for the efficiency of the spatial correlation process is the
stability of the receiver positions and the variability in receiver
separation[3][4]. Correlation plays a crucial role in the study of
underwater acoustic signals. By analyzing the spatial correlation
matrix, researchers can assess the spectrum similarity measured
at different times. Studies have demonstrated a certain degree
of similarity between different frequency bands of underwater
acoustic signals[2][5]. Spatial correlation is used for analyz-
ing and estimating the travel time of acoustic signals[2][6].
Reference[7] employed spatial correlation to estimate the time
Green’s function. Additionally, reference[8] applied the spatial
correlation technique to determine the ship noise spectrum and
its modulation spectrum.

However, traditional methods of spatial correlation are
primarily based on time-domain analysis. Due to the influence
of complex background noise on underwater acoustic wave
propagation, as well as the dependence of sound speed on
temperature and seawater pressure, conventional methods for



source localization and depth estimation typically rely on multi-
path time delay and elevation angles obtained from hydrophone
arrays. These time-domain analysis methods often result in
low time delay resolution, thereby limiting the accuracy of the
estimations.

To address this issue, we propose a modeling approach
based on RMT. This method utilizes a factor model to
analyze and construct the binary structure of residuals obtained
from ship-radiated noise, revealing correlation variations in
spatially inhomogeneous noise fields. This approach provides
novel insights for underwater source localization and sonar
detection. Implementing this method could potentially enhance
the accuracy and reliability of these applications.

Recently, RMT has been a powerful mathematical tool for
statistical data analysis and revealing correlations between
observations. Such as detection techniques based on RMT
have found applications in smart grids, intelligent health-
care, communications, and finance[9][10][11][12]. Its robust
performance under low signal-to-noise ratio conditions has
been well-documented in communications[13]. In recent years,
RMT has also been applied to underwater acoustic signal
research. These applications include separating predominant
single-scattering from weak multiple-scattering of ultrasound in
weakly inhomogeneous media, isolating loud directional sources
from the isotropic diffuse noise field in ocean environments, and
distinguishing interference noise components from diffuse noise
in weakly inhomogeneous ocean environments[14][15][16].
RMT is also utilized for noise field modelings, such as
modeling sound scattering by random sea bottom roughness
and simulating sound propagation in randomly inhomogeneous
oceanic noise fields[17][18]. Furthermore, RMT has been
employed to detect events using Marchenko-Pastur and Tracy-
Widom distributions with random acoustic signal noise[19].

RMT is a data-driven and statistical method that offers
advantages over traditional time-frequency-based analysis
schemes for underwater acoustic signals in the complex ocean
noise environment. By introducing RMT into underwater
acoustic signal processing, especially for studying correlations
in inhomogeneous noise fields and identifying targets in low
signal-to-noise ratio environments, researchers can improve
algorithm accuracy and enhance capabilities in weak signal
detection. This approach also increases the robustness of the
system, providing new research perspectives for passive sonar
signal detection technology.

This paper presents a statistical method based on RMT
for ship-radiated noise and proposes a modeling approach to
estimate temporal and spatial correlations. Utilizing a factor
model based on RMT, it estimates the number of dynamic
factors and constructs a binary correlation structure of residuals
from ship-radiated noise[20]. The key contributions of this
paper are summarized as follows:

(1)Propose a statistical approach for analyzing temporal
and spatial correlations of ship-radiated noise based on RMT.
This method is robust against interference noise and data errors.

(2)Introduce a modeling technique using a factor model

to enhance the accuracy and reliability of ship-radiated noise
analysis in non-Gaussian underwater noise environments.

(3)The proposed method is highly sensitive to variations
in the temporal and spatial correlations of ship-radiated noise,
making it valuable for target detection and enhancing situational
awareness in underwater environments.

(4))Provide new insight into temporal and spatial correla-
tions in ship-radiated noise by extracting dynamic factors and
constructing the binary correlation structure for residuals.

The remaining part of the paper is organized as follows:
Section II provides a detailed problem description. Section
III introduces the proposed method, including the theoretical
spectral distribution of residuals and temporal-spatial correlation
modeling and estimation. Experimental validation is presented
in Section IV, followed by conclusions in Section V.

II. PROBLEM DESCRIPTION

Assuming there are M hydrophones deployed in a vertical
line array underwater, consider the ship-radiated noise hi(t)
received by ith hydrophone. hi(t) consists of the superposition
of mj(t), the noise radiated from N ships, and ni, the
uncorrelated ambient noise[8]. Thus, the ship-radiated noise
received from ith hydrophone can be represented as:

hi(t) = ni(t) +

N∑
j=1

αijmj(t− τij) (1)

Where αij represents the attenuation parameter, and τij is
propagation time from ship j to the hydrophone i, i ∈ 1 . . .M,
j ∈ 1 . . .N.

Assume hi(t) exists temporal and spatial correlation in
an inhomogeneous underwater environment. Consider two
hydrophones separated by a distance L, from which signals
hu(t) and hv(t) are collected from uth and vth hydrophones.
The temporal correlation can be obtained as:

Ruu(τ) =

+∞∫
−∞

hu(t)hu(t− τ)dt (2)

Spatial correlation mainly results from mutual interference
between two or more hydrophones in the underwater noise
field. The spatial correlation Ruv of the underwater acoustic
signals hu and hv is defined as:

Ruv(τ) =

+∞∫
−∞

hu(t)hv(t− τ)dt (3)

III. THE PROPOSED METHOD

Traditional RMT-based studies for ship-radiated noise anal-
ysis typically assume Gaussian characteristics in homogeneous
underwater noise fields. However, in spatially inhomogeneous
noise fields, the noise exhibits non-stationary, non-Gaussian,
and nonlinear characteristics, making it difficult for traditional
Gaussian-based methods to effectively analyze the underwater
acoustic signals. In this section, a factor model is applied
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to capture the temporal-spatial correlation structure of ship-
radiated noise in inhomogeneous noise fields. Initially, the
subspace of residuals is obtained by removing several factors
from the data. Then, the model for temporal-spatial correlation
is developed by deriving the theoretical spectral distribution
of residuals. Finally, by minimizing the distance between the
theoretical and empirical distributions, the temporal-spatial
correlations of ship-radiated noise are determined.

A. Residual Formulation for Ship-Radiated Noise

The ship-radiated noise consists of mechanical noise,
propeller noise, and hydrodynamic noise. Mechanical noise and
parts of propeller have low-frequency line spectrum components
that are periodic and stable. These components can be extracted
using several principal components. Thus, the ship-radiated
noise can be decomposed into principal components and
residuals. Assume matrix D represents ship-radiated noise
recorded by the hydrophone array, which can be formulated as:

D = U +
n∑

p=1
LpFp, where Lp is the matrix of factor loading,

Fp is the matrix of factor, and p is the number of factors to be
subtracted from the underwater acoustic signal. These factors
reflect the spatial correlation of the underwater acoustic signals.
When the first P most important factors are removed from the
passive acoustic signal, the remaining components, referred to
as residuals, U, are represented as follows:

U = D −
n∑

p=1

LpFp (4)

The residuals contain irregular noise components made up
of various sound sources, such as ocean environmental noise
and part of hydrodynamic noise. Unlike traditional Gaussian
noise, the residuals typically exhibit the characteristics of
nonlinear colored noise, which include acoustic information
about the ocean environment and rich ship-related knowledge.
This information reflects the interaction between the ships and
the surrounding marine environment, such as the impact of
ship turbulence, acoustic properties of the ship surface material,
as well as the size and shape of the ship. Therefore, an in-
depth analysis of the residual components can reveal complex
dynamics of the interaction between the ocean environment
and ships.

B. Temporal-spatial Correlation Estimation

The next step is to model the covariance structure of
residual components U using equation (4) and then estimate
the temporal-spatial correlation. Let AN and BN be N × N and
T × T symmetric non-negative definite matrices, respectively.
The matrix AN represents temporal correlation, while BN

represents spatial correlation[20]. The binary structure of the
residue is then characterized by:

U = A
1/2
N εBT

1/2 (5)

Where AN =
{
(AN )ii = 1, (AN )ij,i ̸=j = η, i, j = 1, · · ·N

}
,

and BT = {(BT )α = exp(−|h− t|/α, h, t = 1, · · ·T}, ε is a

N × T matrix with independent identical distribution. Thus,
the covariance matrix of the residual component U using
equation(5) is obtained as:

C =
1

T
UUT =

1

T
AN

1
2 εBT ε

TA
1
2 (6)

To simplify the model, two assumptions are made: first, we
assume that total spatial correlations are efficiently removed
from p principal components. So AN ≈ IN×N or η = 0;
second, the temporal correlation is exponentially decreasing,
represented by{BT } = b|i−j|, with |b| < 1.

Subsequently, the N transform of the covariance matrix C
is obtained by utilizing the cyclic property of the trace and the
FRV multiplication law as follows:

N 1
T A

1
2 εBεTA

1
2
(z) = N 1

T A
1
2 A

1
2 εBεT

(z)

= N 1
T AεBεT (z)(cyclic property of trace)

= z
1+zNA(z)N 1

T εBεT (z)(FRV multiplication law)

= z
1+zNA(z)N 1

T εT εB(z)(cyclic property of trace)

= z
1+zNA(z)

rz
1+rzNB(rz)N 1

T εT ε(z)(FRV multiplication law)

= z
1+zNA(z)

rz
1+rzNB(rz)

(1+z)(1+rz)
z

= rzNA(z)NB(rz)
(7)

Where N 1
T εT ε(z) = (1+z)(1+rz)

z . By taking M ≡ M(z)
and z = M = M(z) derived from N transformation
MX(NX(z)) = NH(MX(z)) = z, the above equation (7)
can be reformulated as follows:

N 1
T A

1
2 εBεTA

1
2
(M(z)) = rMNA(M)NB(rM) = Z (8)

Assuming that the spatial correlation of residual is elim-
inated, the spatial correlation matrix is satisfied A = IN .
Consequently, NA(z) = NI(z) = 1 + 1/z. Therefore, the
equation (8) is conveniently reformulated as follows:

rM =MB(
z

r(1 +M)
) (9)

Next, we need to determine MB for equation (9). The
Temporal covariance matrix B from (6) follows AR(1) process,
which can be represented in the simple form B = b|i−t|. By
applying a Fourier transform to matrix B, the M transform of
the matrix B can be obtained:

MB(z) = − 1
√
1− z

√
1− (1+b2)2

1−b2 z
(10)

where a2 = 1 − b2. Finally, a fourth-order polynomial is
obtained as follows:

a4c2M4 + 2a2c(−(1 + b2)z + a2c)M3 + ((1− b2)2z2

−2a2c(1 + b2) + (c2 − 1)a4)M2 − 2a4M − a4 = 0
(11)

Where |b| < 1, a =
√
1− b2 and c = N

T .
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To further determine the green’s function of the binary
structure model, it can be derived from the moment generating
function M(z) as follows:

GModel(z) =
M(z) + 1

z
(12)

Finally, the spectral distribution of the covariance matrix
given by equation(6), is estimated from the imaginary part of
GModel(z) :

HModel(b) = − 1

π
lim

ε→0+
ℑmG(λ+ iε) (13)

C. The Spectral Distribution Divergence

Assuming the underwater ambient noise remains relatively
stable under normal conditions, we can use this typical ambient
noise as a reference. The first step involves estimating an
appropriate reference spectral distribution, denoted as HModel,
using the processes described in parts A and B. Next, we
obtain the estimated spectral distribution, HEst using online
data. We then compare HEst and HModel by employing the
Kullback-Leibler Divergence spectral distance as:

DKL(H
Est||HModel) = 1

2

∑
i

HEst
i log

HEst
i

Qi

+ 1
2

∑
i

HModel
i log

HModel
i

Qi

(14)

Where Qi =
HEst

i +HModel
i

2 . The number of factors p and b
approximate their true values when the divergence between
the estimated and reference spectral distribution is sufficiently
small. Here, p represents the spatial correlation parameter, and
b represents the temporal correlation parameter.

IV. EXPERIMENT VALIDATION

This section presents numerical results to illustrate the
behavior of the temporal and spatial correlation in ship-radiated
noise. Experiments are conducted to verify the performance of
the proposed method.

A. Datasets

The dataset was collected in the South Sea of China between
August 20 and 22, 2023. It was recorded using a vertical array
of 64 hydrophones arranged in a line, as shown in Fig. 1,
with a sampling rate of 32,000Hz. The hydrophone array is
placed at a depth of approximately 400 meters. Data from the
64-channel array hydrophone was digitized and transmitted via
a cable to a monitoring center for real-time processing and
archival storage. The hydrophones were spaced approximately
6 meters apart along the vertical line. Then the original data
underwent data cleaning and filtering processes. As a result, we
obtained 28 hours of relatively pure ambient noise data as well
as 40 hours of ship-radiated noise. In this section, we analyzed
the correlation variation to gain a better understanding of the
dynamic characteristics of underwater acoustic signals.

Fig. 1. Hydrophone setup for capturing underwater ship-radiated noise

B. Eigenvalue Distribution Analysis for Ship-Radiated Noise

In this subsection, we conducted experiments to validate the
effectiveness of the proposed method for ship-radiated noise.
Through detailed analysis and comparison of the eigenvalue
distributions of the covariance matrix of residuals, we examined
the statistical characteristics of the underwater acoustic signal
and performed environmental perception. Fig. 2 illustrates the
eigenvalue distribution before the ship entered the monitoring
area. The window sizes are set to be 64x360. In contrast, Fig.
3 shows the eigenvalue distribution when the ship appeared in
the monitoring area. The significant change in the eigenvalue
distribution before and after the ship’s appearance is evident.
Therefore, the factor model effectively captures the statistical
characteristics of ship-radiated noise in both states: before
the ship’s appearance and when a ship is present. The results
indicate that during short-term events, such as ship appears, the
eigenvalue distribution of the covariance matrix of residuals
shows a sensitive response. This sensitivity enables the proposed
method to detect variations in the ocean environment by
analyzing the eigenvalue spectrum of the underwater acoustic
signal.
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Fig. 2. Eigenvalue distribution before the ship’s appearance.

C. Temporal and Spatial Correlation Estimation

In this subsection, we examine the temporal and spatial
correlations in three scenarios: before, during, and after the
ship’s appearance. We also estimate the temporal and spatial
correlations in those three states, represented by the parameters
b and p. In this experiment, we used a sliding window method
to process the data with a window size of 64x320. First, we
estimated the spatial correlation coefficient P at different times,
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Fig. 3. Eigenvalue distribution when the ship appears.

as depicted in Fig. 4. The results indicate that spatial correlation
parameter p increases when a ship is present at t=90 seconds.
It is observed that p reflected spatial correlation and varies
with different states of the underwater environment. As shown
in Fig. 4, we compare the eigenvalue distribution of different
states: before, during, and after the appearance of a ship. The
findings demonstrate that the presence of the ship leads to an
increase in spatial correlation and changes in the statistical
characteristics of the data. This reveals that the proposed model
can effectively capture the dynamic of the underwater acoustic
signal.

In addition, we analyze the temporal correlation in different
scenarios to reveal the characteristics of underwater acoustic
signal dynamics, as shown in Fig. 5. A ship was present in the
monitoring area at 1:17 AM on August 21, 2023. It is observed
that the temporal correlation fluctuates with the appearance
of the ship in the monitoring area. The temporal correlation
parameter b is calculated for each set of correlation parameters
and then averaged. The averaged values of b before (I), during
(II), and after (III) the appearance of a ship are b̂=0.6644,
0.7942, and 0.6842, respectively, shown in Fig.5. These results
demonstrate that the temporal correlation significantly increases
when a ship is present in the monitoring area. This indicates
that the temporal correlation parameter b is sensitive to changes
in different states of the ocean environment.
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Fig. 4. Eigenvalue distribution and spatial correlation estimation.

Fig. 5. Temporal correlation estimation for ship-radiated noise.

V. CONCLUSION

This paper introduces a new statistical approach using
RMT to estimate the temporal and spatial correlations in ship-
radiated noise. It proposes a novel method for modeling ship-
radiated noise using a factor model. The results demonstrate
that the method effectively captures variations in temporal and
spatial correlation of ship-radiated noise. By monitoring these
correlations across different scenarios, we gain insights into the
dynamic characteristics of underwater acoustic signals. This
approach offers new perspectives for monitoring water areas and
improving marine situational awareness. Future research should
focus on evaluating how well subsequent pattern recognition
systems can utilize the eigenvalue distribution characteristic
derived from RMT as a feature for analyzing underwater
acoustic signals.
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