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Abstract—Recently, physics-informed neural networks (PINN)
has been applied to the problem of estimating the early room
impulse responses (RIR) from a small number of microphones.
PINN uses two types of loss functions corresponding to physical
laws and data errors. Thus, PINN has the challenge that when
gradients associated with two different loss functions conflict
with each other, they are not properly learned. In this study, we
propose a method for estimating early-part RIRs by introducing
the dynamic pulling method (DPM) into the SIREN architecture
with residual connections, using noisy microphone signals. From
the simulation experiments on a two-dimensional sound field, the
proposed method was able to estimate RIRs with higher accuracy
in noisy environments than conventional methods.

I. INTRODUCTION

The room impulse response (RIR) represents the sound
propagation in a room from a loudspeaker to a microphone
under the assumption of linear time invariance to the sound
field. In particular, the early part of the RIR is important
because it represents the early reflected sound components,
which have more energy than the late reflections and have a
significant effect on the sound image and timbre impression
of sound source [1].

In applications such as sound field control and sound field
visualization, the variation in the early part of the RIR between
different microphone positions is significant. Consequently, it
is necessary to conduct measurements at multiple points rather
than at a single point. However, when RIR measurements
are required over large regions or at high spatial densities,
obtaining RIR measurements for a large number of points can
be challenging.

In recent years, many methods have been proposed to
estimate the RIRs at more points using signals obtained from
a limited number of microphones. In particular, nonparametric
methods for numerically estimating the sound field have been
studied. For example, compressed sensing (CS) methods [2],
[3] have been proposed using plane waves [4], spherical har-
monic functions [5], [6], and the modal expansion [7], which
are solutions to the wave equation. The equivalent source
method [8], [9] represents the sound field by the superposition
of point sources selected and weighted under the assumption
of sparsity in time signal, space and other factors.

On the other hand, RIR estimation methods using deep
learning have also attracted much attention in recent years.

Convolutional neural networks (CNN) [10] and generative
adversarial Network (GAN) [11] can model complicated re-
lationships between inputs and outputs and have been applied
to RIR estimation. Lluı́s et al. proposed a U-net architecture
trained on the size of the sound field obtained using the
greens function in a rectangular enclosure [12]. Similarly, E.
Fernandez-Grande et al. employed a GAN-based approach
to estimate RIRs from limited measurements and achieved
improved estimation accuracy compared to conventional plane
wave regression methods. [13].

Furthermore, a deep learning model called physics-informed
neural networks (PINN) [14], which introduces physical laws
into the loss function, has been proposed. It can be trained so
that the output is adapted to the partial differential equations
governing the system of interest. In particular, SIREN [15],
a network of multi layer perceptrons with sinusoidal activa-
tion functions, has proven to be an effective architecture for
learning neural implicit representations of various signals and
solving wave equations. Additionally, PINN and SIREN were
applied to the inverse problem, and a method for estimating
RIRs using them was proposed [16], [17]. In [16], a compari-
son of the PINN and CS methods [18] showed that the PINN
method had improved estimation accuracy.

PINN generally uses two types of loss functions: losses
for data errors and losses for physical laws. This leads to
the known problem of conflicting gradient vectors from the
two loss functions, resulting in insufficient learning. To solve
this problem, several methods have been proposed. Dynamic
pulling method (DPM) [19] adjusts the composition of the
two gradients when the gradients of the two loss functions
conflict. In [20], the self-adaptive loss balanced method have
been proposed to determine the composition of two gradients
at each learning step. In [17], the self-adaptive loss balanced
method was adapted to the RIR estimation problem with
SIREN. In particular, when solving inverse problems, such as
RIR estimation, overfitting to the data can degrade estimation
accuracy if the data contain significant noise. In addition, if
the learning process fully utilizes physical laws, it can also
be expected to be effective in removing noise from the data in
accordance with these laws. In [21], an RIR estimation method
have been proposed that is robust to noise in the microphone
signals by dynamically switching the loss functions to tolerate
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Fig. 1. Network architecture. Inputs are coordinates (x, y) and time t. The network is composed of R layers of residual blocks. The loss function is calculated
by the output RIRs ĥm(m ∈ M) and measured RIRs hm(m ∈ M), and gradients gLerr and gLwav are computed to use DPM. For updating the network
parameters, the gradients are modified by DPM. M is the location of all estimated points.

data errors. However, RIR estimation in the presence of large
noise in the microphone signals requires further study to
improve estimation accuracy.

In this study, to improve the RIR estimation accuracy in
a noisy environment, we propose the estimation method of
early RIRs based on PINN by introducing DPM and residual
connections [22]. The proposed method uses DPM to prevent
overfitting to the data and take advantage of losses due to the
wave equation to improve estimation accuracy. In addition,
this study uses residual connections to improve estimation
accuracy by utilizing deeper network layers not considered in
conventional RIR estimation methods.

The remainder of this paper is organized as follows. Sec-
tion II describes the network architecture and DPM in the pro-
posed method. Section III presents the simulation experiments
in a two-dimensional sound field to compare the estimation
accuracies between the conventional methods and the proposed
methods. Finally, we conclude the paper in Sect. IV.

II. PROPOSED METHODS

A. Physics-informed neural network using residual connection

A deep learning method using physical laws in loss func-
tions is known as a physics-informed neural network (PINN).
In the case of solving acoustical problem, the wave equation
with second derivatives is often used as the physical laws.
However, general activation functions such as ReLU not allow
second-order derivatives in the automatic differentiation. In this
study, a SIREN network [15] based on a multi-layer perceptron
(MLP) that allows for higher-order differentiation by using
a sine function as activation function. In addition, a residual
connection is employed to enhance the stability of learning in
deeper networks. [22].

The proposed network is illustrated in the Fig. 1. The
network is represented as a composite function of each network

layer ϕ as follows

f(w,x) = (HR ◦HR−1 ◦ · · ·Hr ◦ · · ·H1)(x) (1)

Hr=
1

2
sin(ω0(ϕ2r−1(x2r−1)w2r+b2r)+x2r−1) (2)

ϕ2r−1(x2r−1) = sin(ω0(x
⊤
2r−1w2r−1 + b2r−1)) (3)

Hr is the residual block in the r-th layer (r = 1, . . . , R).
The w and b are the weights and biases of the network,
respectively. The training proceeds with the input x. ω0 is the
SIREN weights.

In this study, the early-part RIRs is estimated using the
coordinate (x, y) and time information t as input x = (x, y, t).
Note that SIREN multiplies the residual computed output by
1/2 to ensure that the output remains within the range of
[−1, 1] [15].

The loss function can be represented using the wave equa-
tion as follows

L = Lerr + λLwav (4)

Lerr =
1

M̃

∑
m∈M̃

∥ĥm − hm∥22 (5)

L
wav

=
1

M

M∑
m=1

∥1
c

∂2ĥm

∂t2
−∇2ĥm∥22 (6)

where λ is a balance parameter between the data loss function
Lerr and the loss function of wave equation Lwav, c is the
speed of sound, t is time, and ∇ is the gradient. ĥm, hm

denote estimated RIRs and measured RIRs, respectively. M̃
is the set of microphone indices, and M is the total number
of measurement positions including microphone positions and
evaluation points.

B. Dynamic pulling method

When using a loss function that combines multiple types
of losses, the gradients from each loss may conflict, which
could disturb the learning process. Thus, in this study, we use
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the following algorithm based on the dynamic pulling method
(DPM) [19], which dynamically adjusts the combination of
gradients from the loss functions.

g(k) =

{
g
(k)
L , if g

(k)
Lerr

· g(k)
Lwav

≥ 0

v + g
(k)
L , otherwise

(7)

v =
−g

(k)
L · g(k)

Lwav
+ δ(k)

∥g(k)
Lwav

∥22
g
(k)
Lwav

(8)

δ(k+1) =

{
wδ(k), if L(k)

wav > ϵ
δ(k)

w , if L(k)
wav ≤ ϵ.

(9)

g(k) is the gradient at the k-th step, and g
(k)
L , g(k)

Lerr
, and g

(k)
Lwav

are the gradients of the losses L, Lerr, and Lwav, respectively.
w, ϵ, and δ are hyperparameters. And v is the gradient change
vector, which is updated for each learning. That is, as shown
in Fig. 1, after obtaining the gradient from each loss function,
this algorithm is used to adjust the gradient and update the
network.

III. SIMULATION EXPERIMENT

A. Simulation conditions

Simulation experiments were conducted to estimate the early
part of RIRs from a small number of microphone signals in a
two-dimensional sound field. The estimation accuracy of four
methods was compared: two conventional methods, CS [8]
and PINN [16], and two proposed methods, PINN with DPM
(DPM) and PINN with DPM and residual connections (DPM–
Res).

Fig. 2 shows the arrangement of measurement points (12×
12) and estimation points (20 × 20) . The Gaussian noises
were added to the microphone signals with SNR = 10 dB.
The sound source was a line source at (0, 1.5) m. The length
of microphone signal was 0.02 s. The sampling frequency
was 8 kHz. The early part of RIRs were simulated by SFS
toolbox [23] including up to second-order reflections.

The deep learning Optimizer was adam, and the learning
late was set to 10−5. For DPM-Res, the number of block was
R=2. For DPM, the number of hidden layers was four. For
simple PINN, the number of hidden layers was three. For initial
parameters, the balance parameter was λ = 10−6. ω0 = 7 for
DPM and DPM-Res and ω0 = 12 for PINN.

The estimation accuracy was evaluated by the normalized
mean square error (NMSE) as follows.

NMSE = 10 log10
1

M

M∑
m=1

∥ĥm − hm∥22
∥ĥm∥22

. (10)

B. Results

We compared NMSEs of the estimated sound fields by the
two conventional methods and two proposed methods. Fig. 3
shows the estimated sound field at y = 0.03 m.

From Fig. 3(c), the amplitude of estimated sound field by
CS was significantly small. The microphone signal was noisy

y
 [

m
]

x [m]

: Estimate point : Measurement point

Fig. 2. Arrangement of measurement points (crosses) and estimation points
(circles) (each point is 0.02 m apart, placed in the center of a 6 m × 4 m
rectangular room. 2-dimensional sound field with a reflectance of 1 on the
four walls)

with an SNR of 10 dB, making it difficult to estimate the sound
field using CS. From Fig. 3(d)-(f), it can be observed that both
the amplitude and phase estimated by deep learning methods
(PINN, DPM, DPM-Res) are very close to the ground truth.
In addition, Fig. 3(d), (e), and (f) show that the estimation
errors were reduced in the order of PINN, DPM, and DPM-
Res. This indicates that DPM and DPM-Res are more robust
to microphone noise than the conventional PINN.

Next, the NMSEs were compared between the conventional
and proposed methods. Fig. 4 shows the distributions of NMSE
for CS, PINN, DPM, and DPM–Res. Fig. 4(a) and (b) show
the results of the conventional methods. PINN improved the
estimation accuracy by approximately 4.0 dB NMSE compared
to CS. Fig. 4(b) and (c) show that the proposed DPM method
achieved an improvement of approximately 3.0 dB in NMSE
estimation accuracy compared to PINN. Furthermore, DPM-
Res improves the estimation accuracy by approximately 1.2
dB in NMSE compared to DPM and by approximately 4.2 dB
in NMSE compared to PINN.

Table I shows comparison of the mean NMSEs at the
estimation points only, excluding the microphone positions i.e.,
points outside the microphones. PINN improved by approxi-
mately 2.5 dB in mean NMSE compared to CS. DPM and
DPM-Res achieved an improvement in estimation accuracy
of approximately 5.6 dB and 6.8 dB in the average NMSE,
respectively, compared to CS.

Furthermore, Fig. 5 shows NMSE at each training step using
deep learning methods. From the figure, it is evident that PINN
exhibits overfitting to noise. In contrast, DPM effectively mit-
igates overfitting. Moreover, DPM-Res demonstrates a faster
convergence rate compared to DPM.

These results show that the proposed methods (DPM and
DPM-Res) significantly improve the estimation accuracy over
conventional methods for noise removal for RIRs at mi-
crophone points and for RIR estimation at points outside
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Fig. 3. Estimated RIR signals at y = 0.03 m (a) Desired sound field (b) Microphone signals for estimation (c)–(f) Estimated RIRs by CS, PINN, DPM and
DPM-Res, respectively.

Fig. 4. Time-averaged NMSE maps with CS, PINN, DPM and DPM-Res. The white dot-lined borders indicates the region of microphone positions. (a)–(b)
Conventional methods (CS, PINN) (c)–(d) Proposed methods (DPM, DPM-Res)
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Fig. 5. Comparison of NMSEs in each learning steps with PINN, DPM, and
DPM-Res.

the microphones. In particular, DPM-Res achieves the most
accurate estimation even in noisy environments.

TABLE I
MEAN NMSE AT THE ESTIMATION POINTS ONLY, EXCLUDING THE

MICROPHONE POSITIONS

Method CS PINN DPM DPM–Res
Mean NMSE [dB] -4.3 -6.8 -9.9 -11.1

IV. CONCLUSIONS

In this study, we proposed the estimation of early-part RIR
based on PINN using DPM and residual connections. From
the simulation experiments, the proposed method acheived an
improvement in estimation accuracy over conventional PINN
and CS. In future work, we will study the configuration of the
microphone array and further improve the PINN network to
reduce the number of microphones and improve the estimation
accuracy of the early-part RIR estimation.
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