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Abstract—In recent years, various studies have been conducted
to further enhance end-to-end neural speaker diarization (EEND)
systems. However most of the methods increase model complexity
by requiring additional modules during inference. In this paper,
we introduce EEND-EM, a novel end-to-end neural speaker
diarization model that integrates an EM algorithm-aware self-
distillation method into the EEND framework. Our approach
aims to enhance diarization performance by utilizing oracle
guidance features derived from the EM algorithm, improving
the model’s prediction accuracy without increasing model com-
plexity. Through experiments on the LibriMix dataset, EEND-
EM demonstrated significant improvements in diarization error
rates (DER), particularly in minimizing missed speech (MS) and
confusion (CF) metrics, when compared to the baseline EEND-
EDA model. Furthermore, attention weight visualizations indicate
that the transformer encoders in EEND-EM are trained more
effectively.

I. INTRODUCTION
Speaker diarization aims to assign segments of audio to

distinct speakers, effectively aligning the audio data with
the corresponding speaker identities to determine ’who spoke
when’ in a multi-speaker environment. Recent development of
technology has increased the demand of speaker diarization
in multiple fields, such as speech recognition [1] and speaker
verification [2].

Classical cascaded methods approach speaker diarization by
first detecting speaker-active frames and then clustering them
using speaker embeddings. The number of clusters, which
corresponds to the number of speakers, is determined during
inference through mathematical techniques like eigenvalue
analysis [3] or hierarchical clustering with a preset threshold.
Advanced methods such as utilizing improved speaker em-
beddings [4] or better embedding feature extractor [5] led to
increase of clustering-based diarization performance. However,
these methods struggle with handling speaker overlaps, as
each speech frame is usually assigned to only one speaker.
To overcome the limitations, the end-to-end neural speaker
diarization (EEND) method has been researched to consider
speaker diarization as multi-label classification problem [6],
[7] . However both [6] and [7] have limitation of processing
situations where the number of speaker is flexible. To address
this issue, Horiguchi et al. [8] introduced the EEND-EDA
system, employing a sequence-to-sequence approach with an
LSTM encoder-decoder network to derive speaker-wise at-
tractors from frame-wise embeddings and estimate speaker

existence probabilities from the attractors. This approach helps
speaker diarization system to handle varying numbers of
speakers.

Research efforts have been made to further enhance the
performance of the EEND-EDA system. One approach uti-
lizes speaker-specific prior information, such as voice activity
patterns or speaker embeddings [9], [10]. Target Speaker
Voice Activity Detection (TS-VAD) improves performance by
handling overlapping speech and detecting the speech activities
of a set of target speakers [11]. Another method integrates
tasks such as speech separation or speech counting. [12], [13]
The multitask learning approach suggests that training models
together, which are related to the diarization task, can have a
complementary effect. However, in terms of model complexity
during inference, these methods require additional modules to
achieve performance improvements.

In this paper, we adopt EM-Network [14] which proposes
a novel self-distillation framework that leverages target in-
formation for supervised sequence-to-sequence learning tasks.
This framework is designed to improve the prediction accuracy
of sequence models by incorporating oracle guidance derived
from the target sequence, creating a more accurate latent
space. We integrate EM-Network to speaker diarization tasks
and show that proposed model EEND-EM can achieve higher
performance without additional modules.

II. BACKGROUND

A. EEND-EDA

Our proposed method utilizes the original EEND-EDA [8]
where its speaker wise encoder-decoder attractor enables the
system to deal with varying number of speakers. EEND-EDA
architecture is composed of SA-EEND [7] and LSTM based
encoder-decoder. First, the input speech is transformed into
Mel-filterbanks. Then the acoustic feature is processed through
2 linear layers and 4 transformer encoder blocks to get frame-
wise embeddings. Secondly the embedding goes into LSTM
based encoder-decoder which calculates speaker-wise attractor
existence probability and produces corresponding attractors.
Finally, diarization result is calculated as dot products between
the attractors and the frame-wise embeddings. EEND-EDA is
trained with 2 types of losses; diarization loss and attractor
existence loss.



Given diarization result pt and groundtruth labels yt, per-
mutation invariant training is done as follows.

Lpit = min
s

T∑
t=1

H(ps,t, yt) (1)

where t and s is frame and speaker set respectively. H refers
to binary cross entropy (BCE) which is defined as follows.

H(yt, pt) =

S∑
s=1

{−ys,t log ps,t − (1− ys,t) log (1− ps,t)} .

(2)
Attractor existence loss is calculated with the binary cross
entropy (BCE) loss between attractor existence loss probability
q and binary label vector l, where S stands for the number of
speakers.

Lattractor =
1

S + 1
H(q, l) (3)

B. EM-Network

EM-Network [14] proposes self-distillation method based
on mathematical theory to maximize model performance. For
current estimates of parameter θ(t), Q-function calculates the
expected value of log-likelihood with respect to the current
estimates of the latent variables’ z distribution.

Q(θ|θ(t)) = Ez|x,θ(t) [logP (x, z|θ)], (4)

where x is input data, and θ is the parameters of the model.
After the above E-step, M-step updates θ to maximize the Q-
function.

θ(t+1) = argmax
θ

Q(θ|θ(t)). (5)

Through iteration of above EM steps, parameters that maxi-
mize the likelihood of the input is determined.

Equation (6) from EM-Network indicates that the Q-
function’s minimization is equivalent to minimizing the KL-
divergence between the distributions of the EM-Network and
the sequence model, thereby making it analogous to the
maximization step of the traditional EM algorithm.

Q(θ|ϕ(t)) = −DKL

(
P (z|x, y;ϕ(t)) ∥P (z|x; θ)

)
≈ −Lkd(ϕ

(t), θ). (6)

As a result, EM algorithm can be directly applied to se-
quence to sequence model without any iteration steps, where
EM algorithm originally requires. EM-Network proved that
addition of distillation loss between teacher model’s logit and
student model’s logit leads to direct optimization of original se-
quence model, which are speech recognition task and machine
translation task. As mentioned in original paper, we also adopt
L2 loss instead of KL-divergence loss for training stability.

III. PROPOSED METHOD

Our proposed method starts from the original EEND-EDA
[8] framework. The proposed method integrates EM-Network
[14] to the speaker diarization task. Firstly, we introduce
oracle teacher model that generates oracle guidance feature
that combines to original speaker diarization model. Secondly,
we explain self distillation-like training scheme so that the
original model can learn from oracle guidance.

A. EEND-EM

The most challenging part of designing the EM-Network is
to avoid trivial solutions. Simply putting the target into the
fusion module makes trivial solution, which means that fusion
model in EM-Network copies target itself rather than to use the
information from the output embedding of the last transformer
encoder. To prevent the trivial solution problem, we analyze
label aggregator which corresponds to the post-processing of
speaker diarization model.

Diarization result pt and ground-truth labels yt are aggre-
gated before calculating loss. Label aggregation divides labeled
sequences into overlapping frames, aggregates the labels within
each frame based on a majority rule. For this reason, we
assumed that giving target speaker label into oracle encoder
can be applied same as the original EM-Network.

From this point forward, we refer to the EM-Network as
the oracle teacher model and the EEND-EDA part as the
student model in the EM aware self-distillation framework.
EM-Network is consisted of 3 parts; oracle encoder, sequence
model and oracle decoder. Oracle encoder generates oracle
guidance feature using speech labels. Unlike original EM-
Network oracle encoder structure, EEND-EM oralcle encoder
consists of a embedding layer, max pooling and self-attention
based transformer encoder layer. Oracle guidance feature is
used as key K and value V for input of oracle decoder which
is explained below.

K,V = OracleEncoder(yt) (7)

For sequence model, we adopt original EEND-EDA framework
to our work. After the frame-wise embeddings are generated
through stacked transformer blocks, oracle decoder is inserted.
Oracle decoder merges the outputs of the sequence model
and those of the oracle encoder. The decoder is a transformer
decoder that utilizes cross-attention to effectively guide the
source sequence information. The cross-attention layer receives
the output embeddings of the final transformer encoder as
queries and the oracle guidance features as key-value.

Q = SA-EEND(xt) (8)

eϕs,t =OracleDecoder(Q,K, V ) (9)

Output eϕs,t is used to calculate the attractor existence
probability and diarization result of EM-Network.

After forward propagation of EM-Network, EEND-EDA
is forwarded using same input xt. EEND-EDA shares its
parameter with EM-Network. For each epoch, both model
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Fig. 1: Model architecture of EEND-EM. Left blue box is architecture of EM-Network. Middle yellow box is overview of
EEND-EDA. Green box shows how oracle encoder is composed of. D stands for embedding number. K and S in MaxPool1D
block stands for kernel and stride size respectively. All EEND-EDA modules (orange boxes) in EEND-EM share parameters.

is forwarded to predict each diarization result and attractor
existence probability.

pϕs,t, q
ϕ
s,t = EM -Network(xt) (10)

pθs,t, q
θ
s,t = EEND-EDA(xt) (11)

where parameter has relationship of θ ∈ ϕ. During inference
and validation, we exclusively utilize EEND-EDA model. EM-
Network in EEND-EM is only used while training.

B. EM algorithm aware training

Let EM-Network’s parameter and original speaker diariza-
tion model’s parameter be ϕ and θ respectively. There are 3
types of losses for training the proposed model. We adopt
original loss equation (1) and (3) for both model. PIT loss
for each model is Lpit(ϕ) and Lpit(θ). Total PIT loss is as
followed.

Lpit = Lpit(ϕ) + Lpit(θ) (12)

Also attractor existence loss is expressed as Lattractor(ϕ) and
Lattractor(θ) respectively. Total attractor existence loss is as
followed.

Lattractor = Lattractor(ϕ) + Lattractor(θ) (13)

Distillation loss is calculated using l2 loss between the
diarization result of EM-Network and original sequence model.

Lkd(ϕ, θ) =
∑
t

(pϕt − pθt )
2 (14)

Total loss will be as follows. λ is scheduled distillation loss
variable to warmup the training of each model parameter ϕ
and θ.

Ltotal = Lpit + Lattractor + λ ∗ Lkd(ϕ, θ) (15)

IV. EXPERIMENTS AND RESULT

A. Training and test datasets

We tested the performance of EEND-EM with the LibriMix
dataset [15], which contains training and test mixtures from
LibriSpeech [16] train-clean100 and test-clean samples mixed
with WHAM! [17] at a 16kHz sampling rate. The dataset in-
cludes two-speaker (Libri2Mix) and three-speaker (Libri3Mix)
mixtures, consisting of 58 hours/11 hours and 40 hours/11
hours of training/test sets, respectively. We used the min mode
during experiment to benchmark our results against previous
studies.

B. Configurations

We used baseline model EEND-EDA from ESPnet [18] 1.
Acoustic feature is generated through 80-dimensional log-mel
filterbanks with window size of 25ms and frame shift of 10ms.
SA-EEND from Fig. 1 is consisted of 4 transformers with
embedding size of 256. EDA module is 1 recurrent neural
network with hidden unit size of 256. Oracle Encoder has 3
modules. Linear layer maps number of speakers to embedding
size 256. Then transformer encoder is followed by maxpooling
layer with kernel size of K and stride size of S. Oracle decoder
is a transformer decoder with embedding size of 256. We
optimize via Adam with batch size of 64. Warmup learning
rate scheduler is applied where warmup step is 30000 and
learning rate is 2e-3. The scheduled distillation loss variable λ
is set to increase logarithmically from 1e-8 to 1 across epochs.
Total epoch is set as 250. Training is done with one NVIDIA
GeForce RTX 3090 GPU.

C. Evaluation metric

We assessed speaker diarization performance by measuring
the diarization error rate (DER (%)), which includes speaker
confusion (SC (%)), false alarms (FA (%)), and missed detec-
tions (MS (%)). The collar tolerance is set to 0 seconds.

1https://github.com/espnet/espnet/tree/master/egs2/librimix/diar1
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TABLE I: Experimental results on a fixed 2-speaker scenario
(Libri2Mix) for min mode in terms of DER, FA, and MI (%).
† denotes our re-implementation.

Method DER FA MS CF
SA-EEND†[7] 6.13 3.54 2.11 0.48
EEND-EDA†[8] 5.93 3.48 2.07 0.38
EEND-EM512,128 5.61 3.47 1.83 0.31
EEND-EM128,64 5.23 3.67 1.34 0.22
EEND-EM64,32 5.15 3.57 1.35 0.23
EEND-EM32,16 4.98 3.45 1.29 0.24

TABLE II: Experimental results on a fixed 3-speaker scenario
(Libri3Mix) for min mode.

Method DER FA MS CF
SA-EEND† [7] 9.05 5.92 2.72 0.41
EEND-EDA† [8] 8.81 5.81 2.62 0.38
EEND-EM128,64 7.14 5.21 1.65 0.28
EEND-EM64,32 6.93 5.15 1.51 0.27
EEND-EM32,16 6.82 5.14 1.44 0.24

D. Results on the LibriMix dataset

We performed experiments on scenarios with a set number
of speakers. The proposed models were assessed under con-
ditions involving 2 speakers and 3 speakers, utilizing the test
sets min mode from Libri2Mix and Libri3Mix, respectively.
We trained each SA-EEND [7], EEND-EDA [8] and EEND-
EM based on ESPNet [18]. From Table I and II, we can see
that application of EM-Network for speaker diarization proves
to be effective. From the result, we analyze that the more the
kernel and stride sizes differ from the original label aggregating
settings, the better the model’s performance. We can see that
relative performance improvement is 19.07% and 29.17% for
2-speaker and 3-speaker scenarios, respectively.

Table I includes experiment of EEND-EM where kernel and
stride size is equivalent to label aggregator setting, which is
512 and 128 each. The results indicate that the proposed model
yields similar outcomes to the original model, suggesting that
the EM-Network produces trivial solutions. As the authors
assumed, setting the kernel and stride similar to the label ag-
gregator is ineffective for generating oracle guidance features.

E. Visualization of self-attention heads

To further investigate the effect of EM algorithm-aware
training, we plot attention weights for both the baseline and
proposed models. Figure 2 shows the first three transformer
encoder weights drawn from a Libri2Mix test dataset. The
attention weights in the EEND-EDA exhibit varied distribution
patterns. Some plots display sparse attention concentrated
in specific regions, while others have scattered or diagonal
patterns indicating sequential attention. In contrast, the EEND-
EM32,16 shows more coherent attention patterns, with the
diagonal self-attention weights being more pronounced and
consistent across different plots. From the results, we observe
that improved alignment in attention weights correlates with
better speaker-related outcomes.

(a) EEND-EDA

(b) EEND-EM32,16

Fig. 2: Visualization of attention weight matrices in the first
three encoder block. Each line corresponds to each encoder
block with four heads.

V. CONCLUSIONS

In this paper, we propose EEND-EM, which integrates an
EM algorithm-aware self-distillation method into the EEND
framework. The results demonstrate the effectiveness of this
approach, particularly in improving the MS and CF metrics.
Additionally, the attention plots indicate that the transformer
encoder in the proposed model is better trained compared to the
baseline EEND-EDA. Finally, we can explore better structures
for generating oracle encoder and decoder features to provide
improved oracle guidance in the future.
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