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Abstract—In this paper, we propose an advanced method for
pseudo-speaker augmentation using vocal tract length perturba-
tion (VTLP) for automatic speaker verification (ASV) systems.
The state-of-the-art ASV systems based on speaker embeddings
require a substantial amount of training data to construct a
reliable speaker embedding extractor. Traditional data augmen-
tation methods for ASV typically focus on increasing the corpus
size, while ensuring sufficient diversity of distinct speakers is also
crucial for improving accuracy. A previous study has reported
that VTLP is used as an effective pseudo-speaker generation
method, and increasing the number of speakers through VTLP
can enhance ASV performance. However, the previous method
has demonstrated limitations in the number of pseudo-speakers
that can be effectively used, indicating that these methods may not
be sufficiently effective. Therefore, this paper proposes increasing
the number of pseudo-speakers available for data augmentation
by setting the VTLP parameters to ensure diversity for each
speaker. The experimental results show that the proposed pseudo-
speaker augmentation method can significantly improve the
performance of ASV system based on ECAPA-TDNN.

I. INTRODUCTION

In recent years, people’s concern for security has been
increasing as various systems have been digitized, and re-
search on biometric authentication techniques has become
increasingly important [1]. Biometric information used for
authentication includes fingerprints, iris, veins, etc. Among
them, biometric technology using voice is automatic speaker
verification (ASV). ASV is expected to have practical value
as a biometric authentication technology because of its low
cost of implementation and the growing demand for online
biometric authentication.

State-of-the-art (SoTA) ASV systems are based on speaker
embeddings using deep learning, represented by x-vector [2]
and ECAPA-TDNN (Emphasized Channel Attention, Propa-
gation and Aggregation in Time Delay Neural Network) [3].
These SoTA ASV systems employ deep learning techniques for
extracting speaker embeddings, leveraging advanced methods
to achieve efficient and accurate results. It is well known that
in order to extract more expressive speaker embeddings, deep
neural networks (DNNs) need to be trained on a large amount
of training data. In addition to the existing training data, data
augmentation methods are used to further enhance the training
data and their effectiveness in speaker recognition has been
proven [2]–[7].

In conventional ASV systems, the method widely used for
data augmentation is to increase the number of utterances per
speaker by adding noise. Futhermore, speed perturbation is
also employed to further augment the data by varying the
speaking speed of the utterances, thereby increasing the vari-
ability and robustness of the training dataset [8]. Additionally,
the other research has reported that sufficient diversity among
distinct speakers is crucial [9], [10]. To address this, vocal
tract length perturbation (VTLP) [11], [12], which is derived
from vocal tract length normalization (VTLN) [13], [14], has
been proposed as a method to enhance speaker variability. By
perturbing the frequency axis of voice, it is possible to generate
a pseudo-speaker and increase the total number of speakers
by adding it to the original training data, therefore it could
increase the complexity of speaker embedding. The previous
study [9] has reported that ASV performance is improved by
selecting only pseudo-speakers with sufficiently large speaker
variability, rather than simply adding pseudo-speakers. Never-
theless, this approach reduces the number of pseudo-speakers
available for augmentation, thereby not fully achieving the
original goal of increasing the number of speakers. To address
this limitation, a refined method is proposed that balances
the variability of speaker characteristics with the quantity of
pseudo-speakers.

In this paper, we build on the prior work of [9] by proposing
a method to further increase the number of pseudo-speakers
by adjusting VTLP parameters to ensure sufficient variation
in speaker characteristics. Our proposed method involves cal-
culating the cosine similarity of speaker embeddings before
and after applying VTLP for each speaker. For speakers
whose characteristics do not exhibit significant variation, we
modify the VTLP parameters to achieve the necessary changes.
Speakers who exhibit sufficient variation are then added to
the speaker pool as pseudo-speakers. This iterative adjustment
process ensures that the generated pseudo-speakers introduce
sufficient variability, thereby enhancing the effectiveness of
our speaker verification system. In the experiments, an ASV
system using ECAPA-TDNN is constructed, and evaluated
it’s performance when various data augmentation were ap-
plied to the training data. The experimental results confirm
the significance of incorporating a diverse range of speaker
characteristics into the training data. The system’s performance
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Fig. 1: Flow of speaker embedding-based ASV

improved most notably with the data augmentation method
that maximized the dataset size while accounting for speaker
variability. This was achieved by increasing the number of
utterances per speaker through adding noise and expanding the
number of speakers by VTLP. The importance of including
a variety of speaker characteristic in the training data was
confirmed.

The rest of the paper is organized as follows. Section 2
describes a genral ASV system based in speaker embedding.
Section 3 introduced 2 kinds of augmentation. Section 4 will
show how to select pseudo-speaker by variability of speaker
characteristic. Section 5 gives details of experiment and results,
and section 6 concludes this paper.

II. SPEAKER VERIFICATION BASED ON SPEAKER
EMBEDDING

Speaker recognition can be classified into the following two
categories. The first is speaker identification in a multi-level
classification task that identifies the most likely speaker from
several registered speakers. Another is ASV in the binary
classification task, which determines whether the input speech
belongs to the registered speaker himself or not. Figure 1 illus-
trates the flow of the ASV system based on a recent speaker
embedding technique. The ASV system comprises enrollment,
evaluation, and training units for the speaker embedding ex-
traction model, utilized in both enrollment and evaluation.
Initially, the speaker embedding extraction model is trained
using a large dataset to recognize a massive number of different
speakers. The intermediate output of this model, which can
accurately identify speakers, is used as the speaker embedding
for both enrollment and evaluation. In the enrollment phase,
the utterance of the enrolled speaker is converted into features,
which are input to the model to extract the speaker embedding.
The same procedure applies to the evaluation phase for the
test speaker. The similarity between the extracted embeddings
is calculated using cosine similarity or other metrics, and
compared with a threshold to determine speaker identity.

III. DATA AUGMENTATION FOR SPEAKER VERIFICATION

To enhance the performance of the speaker embedding
extraction model, a substantial amount of training data is

required. Besides using existing databases, data augmentation
is widely employed to simulate additional training data. In
ASV, data augmentation typically involves increasing the num-
ber of utterances through methods such as adding noise and
music. Moreover, augmenting the number of speakers using
techniques like VTLP has been shown to improve accuracy [9],
[15].

A. Speech augmentation using simulated noises

This method expands the number of utterances by adding
noise and music to speech data. Meanwhile, it’s often used
in deep neural network training, helps stabilize training and
improve robustness by simulating a noisy environment [16].
Augmenting the number of utterances in ASV can stabilize
the training of embedding and extraction models for speaker
identification.

B. Pseudo-speaker generation by VTLP

VTLN is a technique from speech identification to normalize
the acoustic feature variability across different speakers. In
this method, pseudo-speakers are generated by transforming
the frequency axis of the logarithmic amplitude spectrum of
speech. The normalization frequency of the original voice is ω,
frequency after perturbation is ω′, if the frequency expansion
coefficient is α, it is represented by the formula (1).

ω′ = ω + 2arctan
αsin(ω)

1− αcos(ω)
(1)

In addition, the level of pitch change could be adjusted by
changing the parameter of the frequency expansion coefficient.
In speech recognition, VTLN is used to normalize the vocal
tract length to remove the effect of speaker characteristic,
however in our research, this formula is used as VTLP to add
variation to the vocal tract length. So far, it has been reported
that VTLP can be used for data augmentation in ASV by
adding vocal length perturbation [11], [12]. In these methods,
the number of speakers is augmented by using the voice of
a new speaker, which is processed to a different pitch from
the original voice by applying VTLP to the training data, to
increase the number of speakers in a pseudo form.

IV. PSEUDO-SPEAKER GENERATION CONSIDERING
SPEAKER VARIABILITY

A. Speaker verification by pseudo-speaker generation using
VTLP

In ASV using data augmentation with VTLP described in the
previous chapter, two methods were proposed: one consistently
applies a frequency expansion coefficient to increase speak-
ers, while the other selects pseudo-speakers with significant
variability in speaker characteristics. The first method has the
advantage of simply increasing the number of speakers. How-
ever, incorporating pseudo-speakers with small variability in
speaker characteristics could lead to problem, as it can confuse
the network and make it difficult to distinguish between the
original speaker and the pseudo-speaker. On the other hand, the
method that selects only pseudo-speakers with large speaker
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Fig. 2: Flow of calculating the amount of speaker variability

variability has better performance in ASV. This effect is likely
due to the difficulty the network faces when distinguishing
between the original speaker and a pseudo-speaker with small
variability in characteristics. When the network assumes that
a speaker with small variability is distinct from the original
speaker, making accurate distinctions becomes challenging,
which reduces the network’s accuracy. Selecting only voices
with substantial variability in speaker characteristics as pseudo-
speaker voices can stabilize the training of the speaker embed-
ding extraction network by excluding pseudo-speakers with
minimal variability. Nevertheless, this approach also reduces
the number of pseudo-speakers available for inclusion in the
training data, which counteracts the primary objective of data
augmentation. Consequently, the number of pseudo-speakers
that can be added to the training data is reduced, and the cost
is that the number of speakers cannot be increased sufficiently
for the main purpose of data augmentation.

B. Data selection by variability of speaker characteristic

Pseudo-speaker generation involves applying VTLP to all
speech data and assigning new speaker labels to the pro-
cessed speech. The variability of speaker characteristics is
calculated using cosine similarity between original and pseudo-
speaker embeddings. Only those pseudo-speakers with vari-
ability above a certain threshold are added to the training data.
Figure 2 outlines the process of calculating speaker variability.
The cosine similarity is computed between the speaker embed-
dings of Speaker A’s utterances α and β, and between the em-
beddings of Speaker A’s utterance α and the pseudo-speaker
Apseudo’s utterance α. The difference in cosine similarity is
then assessed by comparing the embeddings of Speaker A’s
utterances with each other and those of Speaker A’s utterance
with the pseudo-speaker Apseudo’s utterance. This difference
represents the variability of speaker characteristics. Since the
cosine similarity between Speaker A’s utterances can vary,
multiple utterances from Speaker A will be used as reference
utterances. Multiple cosine similarities will be calculated and
averaged to determine the overall cosine similarity between
Speaker A’s utterances. In contrast, to obtain the similarity
between the pseudo-speaker Apseudo’s speech and Speaker
A’s speech, the cosine similarity is calculated between the
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embeddings of Speaker A’s speech and all pseudo-speaker
Apseudo’s speech generated by applying VTLP to Speaker A’s
speech. If the calculated variability of speaker characteristics
exceeds a predefined threshold, the pseudo-speaker Apseudo’s
speech is added to the training data. If it is below the threshold,
it is not used as the pseudo-speaker.

C. Pseudo-speaker selection by variability of speaker charac-
teristic

This paper proposes generating new pseudo-speakers with
modified VTLP parameters for those initially deemed to have
low variability. A previous study reported that the number
of pseudo-speakers was reduced to about 40% through data
selection to improve ASV performance. To address this limita-
tion, we propose increasing the data for speaker augmentation
by applying VTLP with modified parameters to the original
speakers of excluded pseudo-speakers. Figure 3 provides an
overview of the proposed method. Initially, the procedure in
Fig. 2 is used to assess the variability of pseudo-speakers. For
those with low variability, VTLP with modified parameters is
applied to generate new pseudo-speakers with increased vari-
ability. This enhanced variability improves the effectiveness
of data augmentation. The process in Fig. 2 is repeated for
these new pseudo-speakers to determine their inclusion in the
training data. By adjusting parameter variations and iteratively
applying the method shown in Fig. 3, a greater number of
pseudo-speakers can be automatically selected. However, as
the absolute value of the VTLP parameter increases, speech
distortion also increases. When this distortion reaches a thresh-
old beyond which the speech can no longer be recognized as
intelligible, the proposed data augmentation method will be
halted.

V. EXPERIMENT

In order to verify the effectiveness of the proposed method,
data augmentation for the number of speeches and speakers
was applied under various conditions, and ASV experiments
were conducted.



TABLE I: Number of speakers and total duration of speech for each
data augmentation condition

Augmentation condition Num of
speakers

Data
duration (hrs)

Average data
duration per
speaker(hrs)

(A) No augmentation 1792 498 0.28
(B) Noise 1792 1495 0.83
(C) VTLP (All) 5376 1494 0.83
(D) VTLP (Select) 2868 794 0.44
(E) VTLP (Proposed) 4086 1128 0.63
(F) VTLP (Proposed+Noise) 4086 5380 3.00

A. Database

JTubeSpeech-ASV [17] was used to train and evaluate the
ASV system, it is a speech corpus consisting of 900 hours
of speech data automatically collected from YouTube videos.
It consists of audio data of only one speaker appearing in
one video, and one channel is considered as one speaker. This
dataset mainly includes Japanese audio, and it also includes
languages such as English, Chinese, and Korean. Among the
subset for ASV of JTubeSpeech-ASV used for learning and
evaluating the speaker embedding extraction model, the train-
ing dataset consists of 107,271 utterances from 1792 speakers.
The test dataset for ASV is also from the JTubeSpeech-ASV
dataset. The test dataset consists of 20,976 speech utterances
from 92 speakers and amounting to 20,976 trials. Of the 20,976
sets, 228 are trials within the same speaker, and 20,748 are
trials between different speakers. The sampling frequency is
16 kHz. The MUSAN database [18] is used for adding noise
and music. The MUSAN database contains 42 hours of music
of various genres, 60 hours of conversations in 12 languages,
and over 900 types of noise. In the experiments, only the noise
subset of the MUSAN database is used. The subset that this
paper used contains a total of about 6 hours of noise, including
mechanical and environmental noises.

B. Experimental setup

In the experiments, an ASV system based on speaker
embedding is constructed. The ECAPA-TDNN is used as the
speaker embedding extraction model, and it is known to have
higher performance. A logarithmic mel filter bank was used as
the input features of the model. The speaker embedding was
extracted as a 512-dimensional vector using the output of the
middle layer of the ECAPA-TDNN.

To verify the relationship between ASV performance and
speaker characteristic variability based on different parame-
ter settings, three methods were compared: the conventional
method applying VTLP with a single parameter to all speakers
(All), the conventional method selecting augmented speakers
based on characteristic variability (Select), and the proposed
method applying VTLP with various parameters to the speaker
characteristics. In the experiments, three proposals have been
prepared for augmenting speakers. The comparison conditions
are shown below, and the number of data sets for training in
each condition is summarized in Table 1.

(A) No augmentation

Only the training dataset of JtubeSpeech-ASV, no data
augmentation was applied.

(B) Noise
For the training dataset of JtubeSpeech-ASV, the number of

utterances is augmented by noise superimposed. The noise data
was randomly selected from MUSAN’s noise dataset, and the
SNR was set to 0. Two types of noise data were superimposed
for each voice data, and the number of utterances per speaker
was tripled.

(C) VTLP (All)
Augmenting the number of speakers by VTLP on the

JtubeSpeech-ASV training dataset. The VTLP (All) applies
VTLP to 1,792 speakers in the training dataset. In the con-
ventional method (All), VTLP is applied to the 1,792 speakers
in the training dataset. The frequency expansion coefficients
are set to 0.1 and -0.1, and VTLP is applied to each voice
to generate two voices each, and 3,584 pseudo-speakers were
added by assigning a new speaker label to the speech as if it
were spoken by a different speaker from the original speaker.

(D) VTLP (Select)
Among the pseudo-speakers generated by the VTLP (All),

by using ECAPA-TDNN as the extraction model for speaker
embedding, only those pseudo-speakers with a large variability
of speaker characteristics from the original speaker are selected
for augmenting the number of speakers.

(E) VTLP (Proposed)
Among the pseudo-speakers generated by the VTLP (All),

by using ECAPA-TDNN as the extraction model for speaker
embedding, it is applied to the pseudo-speakers which are
excluded by condition D, therefore the amount of data could
be increased. The frequency scaling factor will be two cases:
increasing in increments of 0.01 from 0.1 to 0.17 or decreasing
in increments of 0.01 from -0.1 to -0.17.

(F) VTLP (Proposed + Noise)
The experiment augmented the data for both the number of

augmented speakers and the number of utterances by adding
noise and music to the speech in condition (E). Noise data
were randomly selected from the MUSAN noise data set, and
SNR was set to 0. Two types of noise data were superimposed
on each speech data, and the number of utterances per speaker
was increased by a factor of three.

The experiment used the equivalent error rate (EER) as an
evaluation index. The EER is calculated from the point where
the acceptance rate of a person by another person is equivalent
to his/her rejection rate, and the smaller the value is, the better
the accuracy is evaluated.

C. Experimental Result

Table 2 shows the EERs of the ASV results for each of the
conditions (A)-(F). First, comparing the two conditions (A) and
(B), the EER for condition (B) is 0.781 points lower than that
for condition (A), which confirms the effectiveness of speech
augmentation by adding noise and music. Futhermore, compar-
ing the conventional method (C) and (D), both EERs are almost
the same as the EER of (A) without data augmentation. It is
obvious that (C) has the highest EER overall, even though the



amount of data is almost the same as in (B). From the results
above, it suggests that the ECAPA-TDNN does not show
much improvement in accuracy compared to the conventional
method. About comparing the three conditions (C)-(E), the
EERs of (D) and (E) are lower than those of (C) because the
variability of speaker characteristic is taken into account while
the number of speakers is augmented using VTLP. The fact that
the EERs for both cases improved despite the smaller number
of speakers and data volume compared to (C) confirms the
necessity of taking the variability of speaker characteristic into
account. Among these three conditions (C)-(E), the proposed
method (E) has the lowest EER, which is 0.945 points lower
than that of (A). Compared to both conventional methods,
the proposed method (E) shows a significant improvement in
accuracy, and its EER is 0.939 points lower than that of (D).
In both (D) and (E), the number of speakers is augmented
to account for the variability of speakerness, however (E)
uses more pseudo-speakers for augmentation than (D). This
confirms the effectiveness of using more pseudo-speakers by
adjusting the parameters. In (F), the number of utterances per
speaker is further augmented from (E), in which the number
of speakers is augmented using the proposed method, and the
EER is reduced by 0.651 points compared to (E). At the same
time, the EER was 0.815 points lower than that of (B), which
only expanded the number of utterances, resulting in the best
performance among all conditions. From the above results, it
is confirmed that, in data augmentation for ASV based on
speaker embedding, the combined use of noise-superimposed
utterance augmentation and speaker number augmentation with
consideration of variability of speaker characteristic is very
effective in improving the performance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method for augmenting training
data for ASV models by generating pseudo-speakers through
VTLP and considering the variability of speaker characteristic
for selection. Simultaneously, we augment the number of
speakers by varying the VTLP parameters. In the experi-
ment, data augmentation was applied to the JTubespeech-ASV
training dataset by adding noise to increase the number of
utterances, generating pseudo-speakers to increase the num-
ber of speakers, and using both methods. An ASV model
based on speaker embeddings was trained and evaluated the
performance of the ASV system. The experimental results
demonstrated that the best performance was achieved when
more pseudo-speakers were added to the training data, with a
focus on selecting those with significant variations in speaker
characteristics.

For future work, it is considered necessary to explore more
quantitative methods for setting the most appropriate frequency
scaling factors and thresholds. Additionally, since there can
be differences in the variations of speaker characteristics even
within the same speaker’s speech, it is necessary to consider
more suitable methods for selecting pseudo-speakers.

TABLE II: EER (%) of speaker verification for each condition

Augmentation condition ECAPA
EER(%)

(A) No augmentation 6.984
(B) Noise 6.203
(C) VTLP (All) 7.018
(D) VTLP (Select) 6.978
(E) VTLP (Proposed) 6.039
(F) VTLP (Proposed+Noise) 5.388
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