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Abstract—The misuse of Deepfake technology by malicious
actors poses a potential threat to nations, societies, and individu-
als. However, existing methods for detecting Deepfakes primarily
focus on uncompressed videos, such as noise characteristics, local
textures, or frequency statistics. When applied to compressed
videos, these methods experience a decrease in detection per-
formance and are less suitable for real-world scenarios. In this
paper, we propose a Deepfake video detection method based on
3D spatiotemporal trajectories. Specifically, we utilize a robust 3D
model to construct spatiotemporal motion features, integrating
feature details from both 2D and 3D frames to mitigate the influ-
ence of large head rotation angles or insufficient lighting within
frames. Furthermore, we separate facial expressions from head
movements and design a sequential analysis method based on
phase space motion trajectories to explore the feature differences
between genuine and fake faces in Deepfake videos. We conduct
extensive experiments to validate the performance of our pro-
posed method on several compressed Deepfake benchmarks. The
robustness of the well-designed features is verified by calculating
the consistent distribution of facial landmarks before and after
video compression. Our method yields satisfactory results and
showcases its potential for practical applications.

I. INTRODUCTION

Deepfakes [1] is a compound word that is a combination of
Deep Learning and Fake in the field of artificial intelligence
(AI). It is often used to describe fake media generated using
deep learning and other technologies. Deepfake technology can
not only replace the identity of the target person in images and
videos, but also allow the target person to make corresponding
expressions based on the driving video or specified audio. In
addition, Deepfake technology can also edit the facial attributes
of the target person, and even generate faces that do not exist in
real life. In recent years, deep learning algorithms have been
continuously iterated, artificial intelligence-generated content
has flourished, and high-quality images and videos forged by
AI have reached a level that is indistinguishable to the human
eye. Deepfake technology has certain positive application
value. This technology can promote the emerging development
of the entertainment and cultural exchange industry and has
strong entertainment and communication properties. However,
some criminals use these technologies to commit telecom
fraud, create fake news, slander celebrities, publish false
statements, destroy identity verification, sell pornography, etc.,
posing serious threats to individuals, society, and the country.
Therefore, it is particularly critical to carry out research on
Deepfake detection technology.

(a) Real-HD (b) Fake-HD

(c) Real-Compressed (d) Fake-Compressed

Fig. 1: Visualization of real and fake videos in compressed and
uncompressed states. The videos are from FaceForensics++.
HD stands for high definition. Comparing the first and second
columns, the lip borders and teeth of the fake video become
blurred and tampering artifacts are present. Comparing the first
and second rows, the lips and teeth lose their obvious shape in
the compressed video, and compression artifacts appear. When
compression artifacts and tampering artifacts coexist, the teeth
are no longer visible and the shape of the lips has changed.
These challenges lead to the low accuracy observed in current
methods for detecting compressed Deepfake videos.

Current Deepfake video detection methods are mainly cat-
egorized into active defense and passive detection. Active
defense methods prevent the generation of Deepfake videos
by adding signal interference. However, the execution condi-
tions of these methods are harsh, and the data source is not
controllable. On the other hand, passive detection methods can
be divided into learning from forged samples [2]–[5], learning
without forged samples [6]–[8], task migration [9]–[11], and
generate data-driven [12], [13]. These methods explore identifi-
able facial features from various perspectives, including spatial,
frequency, multimodal domains, etc. However, due to the com-
plexity of propagation scenarios and the presence of multiple
adversarial factors, these methods show poor robustness and
generalization ability in real forgery scenarios.

Video compression on social networks is a common phe-
nomenon. When users upload videos to social media platforms
(such as Facebook, Instagram, Twitter, etc.), these platforms
usually compress the video to reduce the file size and speed
up the upload and playback. This compression usually uses
different compression algorithms and parameters to balance
video quality and file size. As depicted in Fig. 1, compression
may cause the loss of video details, reduce the resolution,
frame rate and visual quality of the video, causing the overlap



of compression artifacts and tampering artifacts [14], thereby
reducing the performance of existing Deepfake video detection
methods.

To address compressed Deepfake videos in real-world sce-
narios, this paper proposes a detection method based on 3D
spatiotemporal trajectories to enhance the detection perfor-
mance and robustness of compressed Deepfake video detec-
tion. In detail, by studying facial motion, constructing motion
features in the temporal domain and spatial domain, and per-
forming time series analysis on phase space motion trajectories
to realize the authenticity determination of Deepfake videos.
The main contributions of this paper include:

1) We propose a spatiotemporal feature construction
method based on the robust 3D model, which directly
locates and tracks facial and head landmarks in the
video, and combines the spatial dynamics and temporal
characteristics of facial action units to construct the
features.

2) A temporal feature analysis method based on phase
space motion trajectories is proposed to model the fa-
cial change pattern between the first frame and each
subsequent frame within a continuous period of time. It
explores the temporal changes of facial coordinates in 3D
space, and analyze the overall and global characteristics
of the video.

3) We conduct extensive experiments to verify the detec-
tion performance on compressed Deepfake videos and
the results demonstrate the propsed achieves promising
performance compared to the state-of-the-art methods.
In addition, our method is able to avoid the effects of
large head rotation angle or low illumination. It better
resolves the task of detecting Deepfake videos in real
scenes.

II. RELATED WORK

To our knowledge, researchers have proposed four types
of detection technologies to determine whether the video is
Deepfake.

Learning from forged samples. Two-stream [2] leverages
steganalysis features from traditional image forensics, while
XceptionNet [3] and and EfffcientNet [4] extract spatial fea-
tures from frames. The Two-branch [5] structure constructs
a dual-branch network architecture to achieve multi-domain
information fusion. The core characteristic of such methods
is to utilize paired genuine and fake data as the driving force
for training. The learning process of the classification model
requires the involvement of synthesized facial samples. How-
ever, it exhibits strong data dependency, weak generalization,
and significant impacts on model performance from unknown
tampering types and compression.

Learning without forged samples. Face X-ray [6] detects
traces of fusion operations in forgery methods. PCL [7]
measures the consistency between the source features of face
images. Guillaro et al. [8] use a fusion architecture based
on Transformer to extract high and low-level traces. This

type of model training process does not require the use of
synthesized negative samples of faces as data drivers. Instead,
it captures certain characteristics of the facial information
carrier or exploits inherent process vulnerabilities in Deep-
fakes to achieve detection and authentication. Because it does
not rely on paired genuine and fake facial data, it exhibits
strong transfer detection capabilities across different forgery
algorithms, and its cross-dataset detection performance is also
generally leading within the field.

Task migration. Lip Forensics [9] transfers pre-trained
models from lip-reading to Deepfake-generated facial video
detection, while Shi et al. [10] and Kong et al. [11] propose
models based on identifying real face distributions and Vision
Transformer, respectively. This kind of approach leverages
methods already existing in other forensic or visual tasks and
adapts them for use in detecting Deepfake videos. The original
pre-trained models undergo pre-training on large-scale datasets
specific to other tasks, then fine-tuning on dedicated datasets
for Deepfake detection. Compared to methods that directly
train on Deepfake detection datasets, these models exhibit
better generalization and robustness.

Generate data-driven. Shiohara et al. [12] engage in facial
forgery using source and target images, directing detection
models to focus more on the forgery, and Chen et al. [13]
aim to enrich the “diversity” of forgeries, thereby enhancing
the “sensitivity” to forgeries. One of the most effective ways
to enhance the performance of detection models is to provide
training sets of equally high quality to assist in model training.
However, in contrast to the high-level development of forgery
techniques, the quality of existing datasets varies, and there is
a lack of high-quality data. This situation has led to a dilemma
in Deepfake detection, characterized by asymmetric adversarial
challenges.

However, the aforementioned methods experience a decline
in performance when detecting videos in real-world forgery
scenarios. Currently, there are also a few works targeting real-
world scenarios, such as compression. F3-Net [15] enhances
the frequency domain of frames affected by the Deepfake
forgery process using frequency-aware decomposition and
local frequency statistics. However, this method achieves good
detection results only for videos with a specific compression
rate. FT-two-stream [16] proposes a dual-stream network for
detecting compressed videos, but it obtains the compression
dataset through hard coding and does not utilize compressed
videos from real-world scenarios. To address this issue, Mar-
con et al. [17] download videos from social networks and fine-
tune the network to detect compressed videos. Nevertheless,
this method has a strong data dependency, and the influence of
unknown platform types on model performance is significant.
In response to this problem, Le et al. [18] apply frequency
domain learning and optimal transport theory to knowledge
distillation, thereby enhancing the model’s detection perfor-
mance for low-quality videos. FAMM [19] characterizes facial
muscle movements from a geometric perspective to detect
compressed videos. However, all these methods focus only on
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TABLE I: Quality assessment of hard-coded video (FaceForen-
sics++ LQ) and compressed video (FaceForensics++ Social) in
real scenes using PSNR, SSIM, UQI, IEF, VIF, RECO.

Datasets PSNR SSIM UQI IEF VIF RECO

Raw vs LQ 32.06 0.84 0.99 0.91 0.48 0.85
Raw vs Social 31.06 0.75 0.82 0.93 0.80 1.00

FaceForensics++ [20]. The visual quality of the videos in this
dataset is generally poor. It is not comparable to the highly
realistic faked data currently circulating in social networks. In
view of this, further research is conducted in this paper.

III. THEORETICAL ANALYSES

A. Analysis of compressed Deepfake videos

With the widespread dissemination of video content on
social networks, a massive amount of unstructured video data
has emerged. In this context, to ensure efficient transmission
and storage of videos, social platforms commonly employ
video compression technology. The primary purpose of video
compression is to reduce the size of video files by removing re-
dundant information (including spatial, temporal, and visual re-
dundancies), thereby lowering transmission and storage costs.
However, the compression process often introduces some noise
and distortion. These not only result in compression artifacts
overlapping with tampering artifacts in Deepfake videos but
also hinder deep learning models from fully exploiting lost
detail information. Additionally, the extra noise interferes with
model training, increasing the difficulty of detecting Deepfake
videos.

This study randomly selected a total of 300 uncompressed
videos, hard-coded compressed videos, and social network
compressed videos from FaceForensics++. Six metrics, namely
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity In-
dex (SSIM), Universal Image Quality Index (UQI), Image
Enhancement Factor (IEF), Visual Information Fidelity (VIF),
and Relative Edge Change Ratio (RECO), were used to analyze
the quality of videos before and after compression. PSNR is
one of the commonly used metrics to measure image quality.
It evaluates the distortion of images by calculating the mean
squared error between the original image and the corrupted
image, and then converts the result into a logarithmic ratio
in decibels. Higher PSNR values indicate less image quality
loss. SSIM is a metric used to measure the similarity between
two images. It considers aspects such as brightness, contrast,
and structure similarity, which are closely related to the human
perception of image quality. The SSIM values range from -1 to
1, with values closer to 1 indicating higher similarity between
the images. UQI is a universal image quality evaluation metric
that comprehensively considers contrast, brightness, and struc-
tural information of images. Similar to SSIM, UQI evaluates
image quality by comparing the similarity between the original
and distorted images. IEF is used to evaluate the effectiveness
of image enhancement algorithms. It compares the quality
difference between the enhanced image and the original image
to reflect the effectiveness of the enhancement algorithm.

Fig. 2: The statistical intensity of Action Units (AU07) is
tracked in 100 real videos and 100 fake videos, which describes
upward eyelid movement. There is a significant contrast of the
intensity between the real and fake videos.

VIF is a metric used to evaluate video quality by comparing
the structural similarity between the original video and the
distorted video. RECO is also used to evaluate the impact of
video distortion on edge information. It calculates the degree of
video distortion by comparing the edge information between
the original video and the distorted video. As shown in the
Table I, the PSNR values of both compressed videos are below
the common threshold of 40 dB, indicating significant visual
quality loss and detail information missing after compression.
SSIM, UQI, and IEF values below 1 indicate the introduction
of noise in the compressed videos. VIF values are 0.48 and
0.80, respectively, indicating the structural impact on com-
pressed videos. RECO values are 0.85 and 1.00, respectively,
indicating edge information loss in the compressed videos.

B. Analysis of facial motion

In forged videos, there often exist unnatural facial move-
ments, which may stem from multiple factors. Firstly, the
forging process may lead to discontinuity or deformation of fa-
cial actions. In genuine videos, facial movements are typically
continuous and natural, but in forged videos, due to potential
abrupt changes, discontinuities, missing or distorted frames
in each frame’s synthesis, facial movements often appear
discontinuous and lack smoothness. This lack of continuity is
particularly evident in subtle facial movements such as eyelid
movements. Secondly, the forging process results in a lack of
coordination between facial movements and head postures. In
genuine videos, facial movements often change with variations
in head posture, reflecting the coordination between facial
muscles and head movements. However, in forged videos,
the limitations of synthesis algorithms may prevent accurate
simulation of real head posture changes, or synchronization
issues between facial and head movements may lead to a lack
of coordination, resulting in unnatural facial expressions in
the video. We utilized the open-source tool OpenFace 2.2.0
to track and locate facial features in the videos and analyze
their temporal changes. We selected in 100 real videos and
100 fake videos from the FaceForensics++ (LQ) dataset for
our study. Facial Action Coding System (FACS) is a system
to taxonomize human facial movements by their appearance
on the face. Movements of individual facial muscles are
encoded by FACS from slight different instant changes in
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Fig. 3: The overview of compressed Deepfake video detection based on 3D spatiotemporal. It consists of the 3D spatiotemporal
feature building module and the phase space motion chart analysis module.

facial appearance. Using FACS it is possible to code nearly
any anatomically possible facial expression, deconstructing it
into the specific Action Units (AU) that produced the expres-
sion. It is a common standard to objectively describe facial
expressions. In FACS, we focused on action units (AU07),
which describes upward eyelid movement. Additionally, we
examined head postures represented by Euler angles as

R = Rx ·Ry ·Rz (1)

where Rx, Ry , Rz represent pitch, yaw, and roll, respectively.
As depicted in Fig. 2, we observed relatively smooth temporal
changes in genuine videos, while forged videos exhibited
significant fluctuations and variations, highlighting their pro-
nounced differences.

IV. METHODOLOGY
A. Overview

Fig. 3 illustrates the proposed Deepfake video detection
framework based on 3D spatiotemporal trajectories. The
method consists of two modules: 3D spatiotemporal feature
construction module and phase space motion trajectory anal-
ysis module. In the 3D spatiotemporal feature construction
module, a robust 3D model is employed for facial landmark lo-
calization and tracking, concurrently tracking head movements
decoupled from facial expressions. Subsequently, through the
spatial dynamics and temporal combination of facial action
units (AU), spatiotemporal motion features are constructed.
In the phase space motion trajectory analysis module, we
process motion features using time-delayed embedding tech-
niques to reconstruct phase space trajectories. Subsequently,
we use these reconstructed trajectory data to train a lightweight
Transformer architecture for exploring spatiotemporal patterns
of facial features. Finally, we apply Dempster-Shafer evidence
theory to fuse the model results. The core idea of this approach
hinges on employing a resilient 3D landmark localization
and tracking for crafting spatiotemporal motion features. In
addition, this approach decouples head movements from facial
expressions, covering a wide range of head movements, to
evaluate facial muscle movements in a more nuanced way.

These enables effective resilience against the influence of
compressed videos on model detection performance.

B. 3D spatiotemporal feature building module
The module utilizes a robust 3D model to localize and

track facial landmarks and head movements, where head
movements are decoupled from facial movements. Then the
module selects facial points and head poses to construct
phase space motion trajectories. These trajectories are used
to characterize facial muscle movements in the temporal and
spatial domains. Specifically, it first uses a 2D facial alignment
algorithm to automatically locate 68 landmarks for each frame
of the facial video. Secondly, the 3D facial model is used to
estimate depth information from 2D frames, thereby enabling
3D landmark tracking. Finally, spatiotemporal domain motion
features are constructed through the spatial dynamics and
temporal combination of facial action units (AU).

1) Landmark localization and tracking: Landmark local-
ization, a cascade of trained regressors is employed to achieve
accurate positioning of facial landmarks in each video frame.
The gradient tree boosting algorithm is utilized to train
each regressor, employing an accumulated square error loss.
The training dataset comprises pairs (Ii, Si), where each Ii
represents a facial image, and Si denotes its corresponding
shape vector. The initial shape estimation S

(0)
i for each fa-

cial image is set to the mean shape of the training dataset:
S
(0)
i = mean({S1, S2, . . . , Sn}). In each regression tree,

the regression function rt is learned using the gradient tree
boosting algorithm, and the estimate for each shape is updated
as follows:

S
(t+1)
i = S

(t)
i + rt(Ii, S

(t)
i ) (2)

Notably, the initial shape selection at each level involves
the use of Histograms of Oriented Gradients (HOG) features
for centering and scaling, ensuring comparability across all
frames.

Landmark tracking, the facial landmark tracking algorithm
achieves decoupling of facial expressions and head poses,
eliminating interference from head movements such as transla-
tion, scaling (approaching or moving away from the camera),
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Fig. 4: Construct spatial and temporal features based on 3D
model. Left: Distance features and angular features of the
eyebrow, eye, and mouth regions. Right: Rigid displacement
and rotation angle features of the head in 3D space.

and rotation (rolling, yawing, pitching) on facial expression
landmarks. First, depth information for each facial pixel is
extracted from 2D video frames using a 3D morphable face
model (3DMM). This model incorporates Principal Component
Analysis (PCA) for facial shapes, allowing the reconstruction
of a 3D face from a single 2D image. The PCA model
comprises principal components V = [υ1, υ2, . . . , υn], the
mean value of all facial meshes ν̄, and their standard deviation
σn. The shape of a novel face is then generated as follows:

Si = ν̄ +
N∑

n=1

αnσnυn (3)

where N is the number of principal components, and αn

represents Si in the coordinates of the PCA shape space.
The 3D face shapes are reconstructed by fitting 68 detected
landmarks to a PCA shape model. In the 3D model fitting
stage, we employ the gold standard algorithm to achieve a least
squares approximation of the affine camera matrix given a set
of 2D-3D point pairs. By applying a 3D geometric transfor-
mation matrix, we are able to convert each frame into a frontal
face, enabling tracking and comparison of facial landmark
movements throughout the entire video. Simultaneously, we
introduce geometric constraints for facial landmarks to address
issues with the low accuracy of facial landmark detection
algorithms in frames with significant head rotation angles or
insufficient lighting.

2) Construct spatial and temporal features based on 3D
model: By analyzing the spatial and temporal sequences of
Facial Action Units (AU), facial movements can be quantified
more reliably and specifically, while also helping to reduce
random noise in landmark positioning. We select facial land-
marks related to facial expressions and head poses to construct
the following features, with a focus on the movement patterns
of blinking, eyebrow raising, eye movement, lip closure, and
head poses. (1) Eyebrow Region: Vertical positions of the left
and right eyebrows, angle difference within the eyebrows. (2)
Eye Region: Differences in eye corners, horizontal and vertical
distances between eye corners. (3) Mouth Region: Horizontal
distance between mouth corners, vertical distance of the lips,
average vertical position between both mouth corners. (4) Head
Displacement: Rigid displacements of the head in the X, Y,
and Z directions. (5) Head Rotation: Rigid rotations of the
head in the roll, pitch, and yaw directions. Construct spatial
and temporal features based on 3D model as shown in Fig. 4.

The method proposed in this paper presents several advan-
tages over other approaches in constructing facial movement
features. Firstly, it achieves the decoupling of head movements
from facial expressions. This decoupling allows subsequent
deep learning models to more effectively capture the char-
acteristics of either head movements or facial expressions,
enabling them to focus on specific learning tasks without being
influenced by other factors. This not only reduces the overall
complexity of the task and improves accuracy but also makes it
difficult for creators of forged videos to evade analysis of head
movements even if they attempt to modify facial expressions to
deceive detection models. Secondly, traditional AU detection
algorithms typically only apply to frontal views of the face,
while the 3D model tracking method proposed in this paper can
directly and continuously extract facial and head movement
information from video data. It considers cases with significant
head rotation angles and ensures continuous measurement of
landmarks. This provides a foundation for a more comprehen-
sive representation of AUs and their intensity, rather than just
a few discrete values. Consequently, it effectively mitigates the
impact of compressed videos on model detection performance.

C. Phase space motion chart analysis module

This method first processes the constructed features by
introducing temporal delay embedding to reconstruct phase
space trajectories. Secondly, a recursive graph (RP) is created
to capture relationships between features. Finally, a lightweight
Transformer architecture is employed to explore the differences
in feature distributions between real and fake videos in both
temporal and spatial domains. Existing detection methods
mainly focus on temporal differences between adjacent frames,
while our approach concentrates on modeling facial variation
patterns between the first frame and each subsequent frame
within a continuous time segment, emphasizing holistic and
global video feature analysis.

The recursive graph (RP) is a visualization method that uses
a binary square matrix to represent temporal dependencies
between all states in time series data. Assuming that at times
i and j the states of system X are represented by Xi and
Xj , respectively, recurrence can be recorded through a binary
function as follows:

RX
i,j = Θ(ϵX − ∥Xi −Xj∥1), Xi ∈ Rm, i, j = 1, . . . , N

(4)
where Θ is a Heaviside function. For two time points i and
j in the time series, if their similarity exceeds a predefined
threshold ϵX , a point will be displayed at the corresponding
position in the recursive graph (i.e., RX

i,j = 1). By repeating
this process over the entire time series, a matrix is created
where each element represents the similarity between corre-
sponding time points.

First, extract the feature motion trajectories between the
first frame and subsequent frames of the video to construct
a recursive graph. Secondly, convert the recursive matrix into
the adjacency matrix of the network, representing the spa-
tiotemporal neighborhood relationships between system states
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TABLE II: Ablation study of the detection ACC (%) on facial
expressions (FE) and head pose (HP).

Datasets w/o FE w/o HP Ours

FF++HQ 94.10 92.59 98.48
FF++LQ 91.32 92.97 97.47

Celeb-DF-HQ 94.92 96.45 99.37
Celeb-DF-LQ 96.67 96.62 98.28

in the entire time series. Finally, to fully exploit spatiotemporal
feature differences in real and fake videos, we design a
lightweight Transformer classification model. The initial part
of the model includes a linear layer to embed the input data
into the hidden representation space. This allows the model
to learn useful representations of the data without the need
for manual feature engineering. Secondly, with the hidden
dimension set to 128 and the number of encoder layers and
attention heads to 2 each, a more lightweight Transformer
model has been achieved. This model is suitable for practical
deployment, particularly in scenarios with high task efficiency
requirements and limited resources. Then, average pooling is
employed to generate the final classification probability label
instead of sequence-to-sequence output, thereby reducing the
computational complexity of the model. Subsequently, calcu-
late the loss between the predicted label and the actual label,
and update the network parameters to complete the training.
Finally, employ the Dempster-Shafer evidence theory to fuse
the model results. In the testing phase, the algorithm receives
the video to be tested as input and outputs the predicted label
of the video. If the algorithm outputs 0, the video is predicted
to be true; if the output is 1, the prediction is false.

V. EXPERIMENTS
Datasets. We conducted experiments on FaceForensics++

(FF++), DFDC [21] and Celeb-DF [22] datasets. Videos
from FF++ and Celeb-DF are compressed into two versions:
medium compression (HQ) and high compression (LQ), using
the H.264 codec with constant rate quantization parameters of
23 and 40 respectively. DFDC is the largest publicly available
Deepfake detection dataset, which was released by Facebook
in 2020.

Implementation detail. Firstly, frame-level assessment of
the input video is performed using OpenCV to determine
the presence of faces in each frame. Subsequently, Dlib is
employed to locate 68 facial landmarks, enabling frame seg-
mentation and annotation within the facial region. A regression
tree cascade framework is utilized, where at each cascade
level, the estimated landmark points are refined by adding the
residuals generated by the previous regression tree. Next, a
3D facial model is employed to estimate depth information and
pose estimation from 2D frames, facilitating the tracking of 3D
landmarks. Finally, the network uses the Adam optimization
algorithm to update model parameters with an initial learning
rate of 0.0001. Learning rate adjustments are made using a
scheduler based on the total loss for the current epoch when
the loss function no longer decreases during training. The batch
size is set to 128, and the number of epochs is 30. Loss,

TABLE III: The comparison of the detection ACC (%) and
AUC (%) with the state-of-the-art methods on FF++. The ex-
perimental setup strictly follows TALL-Swim [23] and adopts
its experimental results.

Method FF++HQ FF++LQ

ACC AUC ACC AUC
MesoNet [24] 83.10 - 70.47 -
Xception [3] 95.73 96.30 86.86 89.30

Face X-ray [6] - 87.35 - 61.60
Two-branch [5] 96.43 98.70 86.34 86.59
Add-Net [25] 96.78 97.74 87.50 91.01
F3-Net [15] 97.52 98.10 90.43 90.43
FDFL [26] 96.69 99.30 89.00 92.40

Multi-Att [27] 97.60 99.29 88.69 90.40
FT-two-stream [16] 92.47 95.56 90.70 91.25

FInfer [28] 95.67 97.17 92.27 93.10
RECCE [29] 97.06 99.32 91.03 95.02
FAMM [19] 96.75 97.98 94.67 96.98

TALL-Swim [23] 98.65 99.87 92.82 94.57
Ours 98.48 98.82 97.47 97.98

TABLE IV: The comparison of the detection ACC (%) and
AUC (%) with the state-of-the-art methods on Celeb-DF and
DFDC. The experimental setup strictly follows BRCNet [30]
and adopts its experimental results.

Method Celeb-DF-V2-HQ DFDC

ACC AUC ACC AUC
Two-stream [2] - 53.8 - 61.40

Xception [3] 97.9 99.73 79.35 80.92
Face X-ray [6] - - 72.65 89.5
Multi-Att [27] 97.92 99.94 76.81 90.32
Add-Net [25] 96.93 99.55 78.71 89.85
F3-Net [15] 95.95 98.93 76.17 88.39

FT-two-stream [16] 80.74 86.67 63.85 64.03
FInfer [28] 90.47 93.30 80.39 82.88

RECCE [29] 98.59 99.94 81.20 91.33
FAMM [19] 82.54 85.33 80.10 84.25
BRCNet [30] 98.73 99.94 81.65 91.89

Ours 99.37 99.56 93.29 93.51

accuracy (ACC), area under the curve (AUC) and receiver
operating characteristic (ROC) curve are computed at each
epoch, and model parameters are saved based on the best
loss. In our experiments, a dataset split of 8:1:1 is adopted,
meaning that 80% of videos are used for model training, 10%
for validation, and 10% for testing.

Ablations. This paper characterizes the relative movement
patterns of facial landmarks in both temporal and spatial
domains by integrating facial expressions and head pose. We
conducted ablation studies to assess the combination of facial
expressions and head pose. Specifically, we utilized only facial
expressions or head pose to represent facial motion, and the
results are presented separately in Table II. Experimental
results indicate that the detection performance achieved by
combining facial expressions and head pose surpasses that of
using only facial expressions or head pose. The reason for this
improvement may be attributed to their combination, which
provides an excellent feature for facial motion.

Comparison with SOTA methods. Table III shows the
ACC and AUC evaluation metrics of our method and exist-
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(a) FF++HQ (b) FF++LQ (c) Celeb-DF-V2-HQ (d) DFDC

Fig. 5: ROC (receiver operating characteristic) curves for the state-of-the-art compressed Deepfake videos detection methods on
different public datasets: (a) FF++HQ, (b) FF++LQ, (c) Celeb-DF-V2-HQ, (d) FF++LQ.

(a) Fake video (b) Real video

Fig. 6: The changes in landmarks before and after video com-
pression are depicted. (a) illustrates the continuous changes
in x and y coordinates in the Fake video, (b) illustrates
the continuous changes in x and y coordinates in the Real
video. The observed results indicate that the distributions of
landmarks before and after compression almost completely
overlap, suggesting that video compression does not alter the
distribution of facial coordinate points.

ing methods on the FaceForensics++ dataset. We conducted
comparative experiments on HQ and LQ. In the LQ dataset,
our method is outperforming TALL-Swim [23] by 4.65% in
terms of the ACC and 3.41% in terms of the AUC. And the
performance on HQ is currently comparable to the existing
methods. Table IV displays the ACC and AUC evaluation
metrics of our method and existing methods on the Celeb-
DF and DFDC datasets. Our method achieves an ACC value
of 93.29 and an AUC value of 93.51 on DFDC, surpassing
existing methods. And it demonstrates competitive detection
performance on the Celeb-DF-V2-HQ. We also evaluate the
overall detection performance using the ROC (receiver operat-
ing characteristic) curve, and the results are shown in Fig. 5.
The abscissa values represent the FPR (False Positive Rate),
and the ordinate values represent the TPR (True Positive Rate).
Our curve is closer to the top left hand corner, representing
our method is better than the state-of-the-art methods on the
compressed DeepFake videos detection.

Compared to the existing baselines, our method achieves
nearly optimal performance in video compression experiments.

(a) Fake video (b) Real video

Fig. 7: The 2D visualization of video coordinate distribution.
The circle ‘o’ represents the coordinates of the compressed
video and the asterisk ‘*’ represents the coordinates of the
uncompressed video.

We attribute this to the following reasons. On the one hand,
almost no landmark errors are introduced during the video
compression process, which does not affect the designed
features. However, facial landmark errors are introduced during
video tampering, altering facial motion patterns. Our method
directly employs a robust 3D model to locate and track facial
and head landmarks in videos, and then constructs features
combining 2D and 3D frames. This enhances the robustness
of the model. To confirm the above points, we randomly
select 100 real and 100 fake videos from FaceForensics++, and
analyze the distribution of landmarks before and after com-
pression. Specifically, we selected landmarks in the left eye
region, where the landmarks are numbered 36 to 40. As shown
in Fig. 6, the changes in x-coordinates and y-coordinates of
the real and fake videos before and after compression are
basically the same, thus confirming that compression does not
change the distribution of facial landmarks. In order to observe
the changes in the distribution of coordinate points more
clearly, we performed a 2D visualization of the coordinate
points of the video. As shown in the Fig. 7, it can be clearly
seen that the circle ‘o’ tightly wraps the asterisk ‘*’, which
intuitively illustrates that the coordinate point distribution of
the real and fake videos before and after compression does
not change, further confirming that compression does not
change the distribution of facial landmarks. On the other hand,
existing detection methods mostly rely on neural networks.
The video compression introduces compression artifacts that
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TABLE V: Training and testing time comparison with state-
of-the-art methods.

Method Training Time (s) Testing Time (s)

FWA [31] 14300 197
MesoNet [24] 2007 70
Capsule [32] 36600 125
Re-net [33] 1695 6
FAMM [19] 1033 15

Ours 451 3.33

coexist with tampering artifacts, which may mislead baseline
learning. Therefore, our method performs better in detecting
compressed videos.

Detection efficiency. The time complexity of the algorithm
is as follows. Let’s assume the number of input videos is
m. In the landmark localization and tracking stage, as well
as the feature extraction stage, the algorithm only requires
traversing the number of input videos. The remaining loops
are all constants. Therefore, the time complexity of the al-
gorithm is O(m). Additionally, comparing the training and
testing times of our model with state-of-the-art methods, the
results are shown in the Table V. The training and testing
times required by our method are minimal. In summary, our
method demonstrates superior detection efficiency, making it
conducive for the deployment of models in practical scenarios.

VI. CONCLUSIONS

This paper pioneers the migration of 3D models into the
task of Deepfake facial landmark localization and tracking,
constructing more robust facial motion features. Additionally,
through a sequential analysis approach based on phase space
motion trajectories, it explores the overall and global features
of Deepfake videos. Finally, extensive experiments demon-
strate that our method achieves state-of-the-art performance on
compressed videos and also performs well on uncompressed
videos. At the same time, our method exhibits the highest
detection efficiency that is more suitable for practical appli-
cations in real-world scenarios. Future work will focus on
further improving the algorithm’s robustness and deploying it
for widespread use in real-world scenarios.
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