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Abstract—In recent years, U-net-based models have demonstrated 

high performance in high-magnification face super resolution 

(FSR) tasks and are capable of outputting more vivid super 

resolution (SR) images. However, this model has some drawbacks, 

such as the possibility of unnecessary computations and uniform 

block selection at all stages of the decoder. Therefore, we propose 

a Direct and Stage-wise (DS) Net, which improves on CTCNet [1], 

a U-net based model with high qualitative results. This model 

outperforms previous networks by eliminating encoders to reduce 

computational waste, and by focusing on global feature extraction 

in the small tensor size stage. 

 

I. INTRODUCTION 

Super-resolution (SR) is a traditional task in image 

processing that aims to reconstruct high resolution (HR) images 

from low resolution (LR) images. This task is an ill-posed 

problem since most LR images are affected by multiple 

degrading factors including aliasing, motion blur and out-of-

focus and there are numerous possible SR results based on 

which degrading factors are dominant in each picture. To solve 

this task many machine learning-based methods are proposed.  

Currently, various networks including RCAN [2] and 

SwinIR [3] have been proposed for low-magnification SR tasks 

such as 2×, and they can already output clear SR results that are 

not much different from ground truth (GT) images. However, 

research on SR tasks at high magnifications, such as 8×, has yet 

to output images like those of GT, and there is room for further 

development.  

Face super resolution (FSR) is the major task in such high-

magnification SR tasks. The reason why face images are often 

used in high-magnification SR is because face images have few 

high-frequency components. The skin area that occupies the 

majority of the face image can be represented with a certain 

degree of color, so there are fewer high-frequency components 

than in other types of images, such as building images. Since it 

is difficult to retrieve high-frequency components from LR 

images in high-magnification SR, face images with relatively 

few high-frequency components are considered suitable for this 

purpose. In addition, face image restoration can be utilized not 

only for entertainment applications but also for many tasks 

including verification, and analysis making it a task with high 

social demands. 

In the field of FSR, many methods have been proposed. 

Recently, the mainstream approach involves up-sampling the 

LR image to HR size using bicubic interpolation and then 

passing it through a U-Net structured network, similar to image 

deblurring, to output the SR image, as seen in methods like 

SPARNet [4] and CTCNet [1]. 

However, there are two problems with these methods: First, 

the process of up-sampling the image size once and then down-

sampling it again at the encoder part of the U-net structure is a 

two-step process, which increases the computational cost and 

may prevents meaningful feature extraction. The second 

problem is that in the decoder section, the same feature 

extraction block is used for all stages and feature extraction 

appropriate for each size stage is not performed. 

To solve the above problems, we introduce Direct and Stage-

wise (DS) Net which based on CTCNet [1], which is a Unet-

based network that currently boasts high performance. This 

DSNet has 3 key aspects. First, we omitted the encoder part of 

the U-net and directly input LR images from the bottleneck part 

to reduce the computational cost. Second, we changed the 

Feature Refinement Module (FRM), the feature extraction 

block in the bottleneck part, to a Global-wise Feature 

Refinement Module (GFRM) that can extract more global 

information. Finally, the third improvement was achieved by 

removing the convolution neural networks (CNN) based Facial 

Structure Attention Unit (FSAU), which is good at extracting 

local information, from the Local-Global Feature Cooperation 

Module (LGCM) in the bottom layer of the decoder section, 

and replacing it with a transformer block only, thereby 

adjusting the number of blocks and improving accuracy. With 

these improvements, we were able to demonstrate superiority 

over CTCNet [1] and other major SR methods without a 

significant increase in computational load. 

 

II. RELATED WORKS 

Since Baker and Kanade [5] proposed the concept of FSR, 

many methods were proposed for FSR tasks. Some FSR 
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methods utilize prior-guided training. These methods succeed 

in utilizing multiple information such as facial landmarks and 

action units to reconstruct SR images but it requires an 

additional labeled dataset [6]. Recently, the diffusion model [7] 

has contributed to the improvement of SR results however these 

models often require high computation capacity and therefore, 

implementation in end devices is still a long way off. CTCNet  

[1], which we will use as our base network model, can be 

trained on a dataset of HR-LR pairs and achieves SR with 

relatively low computational cost with high accuracy. 

CTCNet [1] is composed of three parts: an encoder part, a 

bottleneck part, and a decoder part. Each part performs feature 

extraction using CNN-based blocks (FSAU and Feature 

Enhancement Unit (FEU)) and transformer blocks to enable 

both global and local feature extraction. The contents of each 

block will be lightly touched upon in the proposed method, but 

for details, please refer to this paper on CTCNet [1]. However, 

there are two problems with this network: The first is the 

wastefulness of the encoder part. In CTCNet [1], the LR image 

is up-sampled by bicubic sampling and then down-sampled 

while extracting features in the encoder part, but this requires a 

large computational load because of the feature extraction of 

the large-size image. In addition, it is questionable to what 

extent applying the high-dimensional information extraction 

characteristic of the U-net structure will contribute to SR results. 

The second is that the same feature extraction block is used 

in each stage of the decoder section. The LGCM feature 

extraction block in the decoder section consists of a CNN-based 

FSAU block suitable for local information extraction and a 

transformer block suitable for global information extraction [1]. 

However, since the size of the tensor differs at each stage, it 

will be essential to adjust the size of the tensor at each stage to 

determine whether the emphasis should be placed on global or 

local information. Specifically, since information on fine 

details of a face image cannot be obtained when the tensor is 

small, we believe that the focus should be on global information 

extraction for the entire face and that the weight of local 

information extraction should be increased at the stage where a 

large tensor is processed. 

 

III. PROPOSED METHOD 

A. Overall architecture 

DSNet has the structure shown in the Fig.1. In DSNet, we 

input LR images directly to the network and repeat feature 

extraction and up-sampling until we get images that are 

equivalent to the size of HR images. By this direct and simple 

network structure, we could drastically reduce unnecessary 

computation cost while preserving SR performance.  

To better demonstrate the model, we define 𝐼𝐿𝑅 , 𝐼𝑆𝑅 , and 

𝐼𝐻𝑅 as the LR input image, the recovered SR image, and the 

ground-truth HR image, respectively. Also, the size of the LR 

image is set to 16×16. 

When an LR image is input to the network, shallow features 

are first extracted by 3 × 3 convolution, and then both global 

and local features are extracted using a G-FRM block in the 

Bottleneck feature extraction section. Next, the up-sampling 

block consisting of a 6 × 6 transposed convolutional layer with 

stride 2, a LeakyReLU activation function, and a 3 × 3 
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convolution with stride 1 is used for ×2 up-sampling to obtain 

32 × 32 size feature map. After up-sampling to 32 × 32 size, 

features are extracted with emphasis on global information 

through the Transformer stack. 

After that, the process of 2× up-sampling by the up-sampling 

block and feature extraction by the LGCM block is repeated 

twice, and finally, 𝐼𝑜𝑢𝑡  is made using 3×3 convolution. 

Finally, the output image is given by 𝐼𝑆𝑅 =  𝐼𝑜𝑢𝑡 +  𝐼𝐿𝑅
8↑ . 

Meanwhile, 𝐼𝐿𝑅
8↑  is made by conducting ×8 bicubic up-

sampling of 𝐼𝐿𝑅. Given a training dataset {𝐼𝐿𝑅
𝑖 , 𝐼𝐻𝑅

𝑖 }𝑖=1
𝑁 , DSNet 

utilize pixel-level loss function:  

 

ℒ(Θ) =  1 𝑁⁄ Σ𝑖=1
𝑁 ‖𝐹𝐷𝑆𝑁𝑒𝑡(𝐼𝐿𝑅

𝑖 , Θ) − 𝐼𝐻𝑅
𝑖 ‖,    (1) 

 

  Meanwhile, N, 𝐹𝐷𝑆𝑁𝑒𝑡(∙)  and Θ  denote the number of 

training datasets, DSNet and parameter set of DSNet, 

respectively. 

 

B. Bottleneck feature extraction 

In the bottleneck part that processes the 16×16 tensor, 

CTCNet [1] use the FRM block which consists of two feature 

extraction blocks, FSAU and FEU. Since both of these feature 

extraction blocks are CNN based ones, they are suited for local 

feature extraction. Especially, the FEU uses a double-branch 

structure to extract features from the original scale tensor and 

the down-sampled tensor, and finally fuse them to reduce the 

computational cost [1]. 

However, since feature extraction by FRM is performed on 

extremely small tensors in the bottleneck part, it is more 

important to extract global information than to extract local 

information. 

Therefore, in DSNet we deleted FSAU blocks from FRM and 

inputted transformer blocks instead, naming it G-FRM block. 

The reason why we put transformer block instead of CNN 

based block is because transformer blocks can learn the 

relationships between elements of a sequence and thus suited 

for extracting global information [8]. In DSNet, we use 

transformer block that consist of Multi-Dconv head Transposed 

Attention (MDTA) and Gated-Dconv Feed-forward Network 

(GDFN) from [9]. MTDA is designed to address the 

computational challenges of conventional self-attention 

mechanisms. Instead of applying self-attention across the 

spatial dimensions, it operates across the channel dimensions, 

thus efficiently capturing global context with reduced 

computational cost. Additionally, it uses depth-wise 

convolutions to focus on local context before generating the 

overall attention map, ensuring a balance between local and 

global information processing. The GDFN modifies the 

traditional feed-forward network in two key ways. Firstly, it 

uses a gating mechanism, which involves two separate paths of 

linear transformations that are combined element-wise, with 

one path being activated by the GELU function. Secondly, it 

incorporates depth-wise convolutions to capture information 

from adjacent pixels, enhancing the network's ability to learn 

local image structures crucial for effective image restoration. 

Thus, by combining the FEU, which can extract local 

information at low computational cost, and the transformer 

block, which can extract global information, it is possible to 

perform feature extraction suited to small tensors. 

 

C. Transformer stack 

In the bottom stage of encoding part, CTCNet use LGCM 

that use both CNN based FSAU block and transformer block in 

order to extract global and local features [1]. Similar to the 

changes made to the FRM in Bottleneck feature extraction, we 

decided to eliminate the FSAU and keep only the transformer, 

since this part also targets small 32 x 32 feature maps and we 

thought it would be better to put more emphasis on global 

information extraction. However, we thought that simply using 

a single transformer block would sacrifice pure feature 

extraction capability, so we decided to compensate for the lack 

of FSAU by connecting the transformers in series. After the 

experiment explained in ablation study, we identified that 4 that 

four transformers in series was optimal, and we named it the 

transformer stack. 

 

IV. EXPERIMENT 

A. Dataset 

In this paper, we utilize 2 different datasets as training 

datasets in order to examine the efficiency of our method. The 

first dataset we use is the full dataset which consists of 18,000 

samples of the CelebA [10] dataset for training, 200 samples 

for validating. This dataset is the same as the dataset which was 

used in the CTCNet paper [1], and used for comparing our 

method and other FSR methods. The second dataset we use is 

a small dataset which consists of 3,000 samples of the CelebA  

dataset for training, and 100 samples for validating. This small 

dataset is used for ablation study and since this small dataset 

required a shorter time to train, we used this dataset to mitigate 

the time we need for evaluation. Although the overall accuracy 

of the networks will be reduced due to the small number of 

samples that can be referenced in training, we believe that the 

relative advantage between networks can be confirmed even 

using a small dataset. 

For the test data set, 1000 images from CelebA were used. 

In all data sets, the CelebA images were cropped to 128×128 

size as HR, and LR images are made by conducting 8× bicubic 

down-sampling. 
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Table 1. Quantitative comparisons for ×8 SR on the CelebA 

test sets [1]. Best and second-best results are bolded and 

underlined. 

Fig. 2 Visual comparisons for ×8 SR on the CelebA test set. 

 

B. Implementation details 

Other training conditions are set as in CTCNet [1]. That is, 

implementation of our model is done by PyTorch framework, 

the optimizer is Adam and set β1 = 0.9 and β2 = 0.99, the initial 

learning rate is set to 2 × 10 -4, the batch size is 10 and the 

number of epochs is 100. Also, PSNR and SSIM [11] are used 

for qualitative comparisons. 

 

C. Comparison with other methods 

We compare DSNet with 9 major state-of-the-art methods. 

These methods include general SR methods SAN [12], RCAN 

[2], HAN [13], SwinIR [3], major FSR methods FSRNet [14], 

FACN [15], SPARNet [4], SISN [16], and CTCNet [1]. Since 

DSNet was experimented under the same conditions as 

CTCNet and When CTCNet was trained and tested under these 

conditions, the same results as reported in the CTCNet paper 

were obtained, for the qualitative evaluation values of the state- 

Table 2. Quantitative result of omitting encoder section. 

Better results are bolded. 

Table 3. Quantitative evaluation of contents in FRM block. 

Best and second-best results are bolded and underlined. 

Bottom contents are used in DSNet 

 

of-the-art methods, we referred to the result shown on CTCNet 

paper [1]. 

 

1) Quantitative comparison:  

When compared with other SOTA methods, we could see 

from Tab. 1 that results on DSNet outperforms other method in 

both PSNR and SSIM evaluation. 

 

2) Qualitative comparison 

In Fig.2 when we compare CTCNet [1] and DSNet, we could 

see, that DSNet can reconstruct SR images that are closer to GT 

images. For example, when comparing the results of the second 

male image, it can be seen that DSNet outputs results that are 

closer to GT in terms of nose shape, etc. 

 

D. Ablation study 

In this section, we conducted three ablation studies using the 

small dataset and examined the efficiency of omission of the 

encoder section, GFRM in Bottleneck feature extraction and 

transformer stack, respectively. Since we used small training 

dataset for Ablation study, quantitative results are decreased 

compared to results shown in tab. 1 however, we believe that 

even if the absolute amount of quantitative results has been 

reduced, the relative superiority relationship between different 

networks can still be confirmed. 

 

1) Omission of encoder section 

In order to assess efficiency of omitting encoder we 

compared CTCNet with/without encoder stage.  Tab. 2 shows  

that the omission of encoder significantly reduces the 

number of parameters (reduces the parameters of the model to 

about 70% of the original) in the model, thus reduces the 

computational load, and also improves PSNR result. 
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Fig. 3 Relationship between the number of transformers and 

PSNR in transformer stack. 

 

2) GFRM in Bottleneck feature extraction 

In order to verify the effectiveness of GFRM, we compared 

the qualitative results when a combination of FEU, FSAU, and 

transformer were introduced into the FRM for the feature 

extraction block at the bottleneck area. As shown in Tab. 3, it 

was found that the eliminating FSAU from the FRM and 

inserting transformer instead produced the best PSNR, and that 

the number of parameters could be kept at a reasonable value. 

 

3) Number of transformer blocks in transformer stack  

To determine the optimal number of transformers at the 

Transformer stack, we examined the PSNR values when 

varying the number of transformers. Fig. 4 shows that the best 

results were obtained when four transformers were used. 

V. CONCLUSIONS 

In this paper, we proposed DSNet, which is a significant 

improvement over CTCNet. In our study, we found that 

eliminating encoders in the U-net based SR models does not 

reduce the accuracy of SR and significantly reduces the 

computational cost. We also found that instead of using the 

same feature extraction block in all stages, it is better to use a 

global feature extraction-intensive network for feature 

extraction on small tensors. With these two modifications, 

DSNet was able to produce better quantitative results than 

other FSR methods. 

There are two future prospects. Although the proposed 

DSNet is able to produce SR results that are somewhat closer 

to GT than existing methods, it still lacks the ability to 

reproduce the finest details. Therefore, we believe that a 

network that can extract more local information and restore 

details is required. 

The second is the addition of more novel blocks. Although 

this study has succeeded in improving SR performance by 

making major modifications to CTCNet, the blocks 

themselves are not different from those used in CTCNet, so 

there is room to further improve SR performance by adding 

more novel blocks in the future. 
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